

(NASA-TM-4155) AN EXPERIMENTAL INVESTIGATION OF THRUST VECTORING TWO-DIMENSIONAL CONVERGENT-DIVERGENT NOZZLES INSTALLED IN A TWIN-ENGINE FIGHTER MODEL AT HIGH ANGLES OF ATTACK (NASA) 123 DCSCL 01A HI/OZ

N90-15884

Unclas

0235681

NASA Technical Memorandum 4155

An Experimental Investigation of Thrust Vectoring Two-Dimensional Covergent-Divergent Nozzles Installed in a Twin-Engine Fighter Model at High Angles of Attack

Francis J. Capone, Mary L. Mason, and Laurence D. Leavitt Langley Research Center Hampton, Virginia

National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division

Summary

This paper presents results from an investigation to determine the thrust vectoring capability of subscale, two-dimensional convergent-divergent exhaust nozzles installed on a twin-engine general research fighter model at angles of attack from -2° to 35° . Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch-vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers ranging from 0 to 1.20. High-pressure air was used to simulate the jet exhaust and provide values of nozzle pressure ratio up to 9.

Nozzle sidewall cutback caused little or no effect on peak static nozzle performance for both unvectored and pitch-vectored nozzles. Thrust-minus-drag performance for the unvectored nozzle configurations varied less than 1 percent at subsonic speeds, thus showing the relative insensitivity of installed performance to nozzle sidewall cutback. At static conditions, resultant pitch vector angle was always greater than the geometric pitch vector angle for the three configurations tested. The increment in either the force or moment coefficient that resulted from pitch or yaw vectoring remained essentially constant over the entire angle-of-attack range for all Mach numbers tested. Longitudinal control power was a function of nozzle pressure ratio and Mach number. Powered controls were very effective at low Mach numbers, but their effectiveness decreased as Mach number increased because of a reduction in thrust. Longitudinal control power from thrust vectoring was greater than that provided by aerodynamic controls at low speeds. Negative yaw vector angles were generated at underexpanded nozzle operating conditions, but positive yaw vector angles were found at overexpanded nozzle operating conditions for a nozzle using a single cutback sidewall to produce yaw thrust vectoring.

Introduction

The next generation of fighter aircraft will be a versatile class of vehicles designed for operation over a wide range of flight and combat conditions. Future fighter aircraft requirements will probably include transonic and supersonic cruise capability, short takeoff and landing (STOL) features, high turn rates, and maneuvering at both conventional and high angles of attack. Studies have shown that significant advantages in air combat are gained with the ability to perform transient maneuvers at high angles of attack including brief excursions into post-

stall conditions. (See refs. 1 to 5.) Current fighters are somewhat limited in their angle-of-attack envelope because inadequate aerodynamic control power exists at high angles of attack.

Augmenting existing aircraft control systems with multiaxis thrust vectoring could greatly enhance the effectiveness of fighter aircraft and allow them to exploit a much-expanded angle-of-attack envelope. If current flight capabilities are sufficient, augmenting existing fighter aircraft control systems could allow the designer the option of reducing empennage size, thus reducing total airframe drag. In either case, improved low-speed, high-angle-of-attack performance and STOL capability are likely benefits of the use of thrust vectoring (refs. 6 to 8).

A number of investigations conducted at both static (wind-off) and forward speeds have verified the effectiveness of multifunction nozzles for pitch thrust vectoring. (For example, see refs. 9 to 14.) More recent studies have evaluated static and wind-on effects of lateral or yaw thrust vectoring on installed nozzle performance (refs. 9, 10, and 14 to 16).

This paper presents results from an investigation to determine the thrust vectoring capability of subscale, two-dimensional convergent-divergent exhaust nozzles installed on a twin-engine general research fighter model at angles of attack from -2° to 35° . Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch-vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers ranging from 0 to 1.20. High-pressure air was used to simulate the jet exhaust and provide values of nozzle pressure ratio up to 9.

Symbols

All model longitudinal forces and moments are referred to the stability axis system, and all lateral forces and moments are referred to the body axis system. The model moment reference center was located 1.75 in. above the model centerline at fuselage station 36.06 in. (FS 36.06) which corresponds to 0.25\overline{c}. A discussion of the data reduction procedure and definitions of the aerodynamic force and moment terms and the propulsion relationships are presented in the appendix. Further details of the data reduction and calibration procedures used herein can be found in references 7 and 18. The symbols used in the computer-generated tables are given in parentheses.

A_e		nozzle exit area, in^2	$C_{l,t}$	(CROLLT)	total aft-end rolling-moment coefficient including thrust	
$A_{ m max}$		maximum model cross-			component, $\frac{\text{Rolling moment}}{q_{\infty}Sb}$	
,		sectional area, in ²	C_m	(CM)	total aft-end aerodynamic pitching-moment coeffi-	
$A_{ m mb,1}$		model cross-sectional area at FS 44.75 and 48.25 , in ²			cient, $C_m \equiv C_{m,t}$ at NPR = 1.0 (jet off)	
$A_{ m mb,2}$		model cross-sectional area at FS 66.25, in ²	$C_{m,\mathrm{aft}}$	(CMAFT)	afterbody pitching-moment coefficient	
$A_{ m seal,1}$		cross-sectional area enclosed	$C_{m,n}$	(CMN)	nozzle pitching-moment coefficient	
		by seal strip at FS 44.75 and 48.25, in ²	$C_{m,t}$	(CMT)		
4		ŕ	$\smile_{m,t}$	(CM1)	total aft-end pitching- moment coefficient in-	
$A_{ m seal,2}$		cross-sectional area enclosed by seal strip at FS 66.25, in ²			cluding thrust component, $\frac{\text{Pitching moment}}{q_{\infty}S\overline{c}}$	
A_t		nozzle throat area, in ²	C_{m_δ}		longitudinal control power,	
$\mathbf{A}\mathbf{R}$		nozzle aspect ratio, ratio	C		per degree	
		of nozzle throat width to height	$C_{m{m_{\delta_v}}}$		longitudinal control power due to pitch vectoring, per degree	
b		wing span, 40.00 in.	C_n	(CN)	total aft-end yawing mo-	
b_n		maximum nozzle width, in.	••	(31.)	ment, $C_n \equiv C_{n,t}$ at	
C_D	(CD)	total aft-end drag coefficient, $C_D \equiv C_{D-F}$ at	$C_{n,t}$	(CNT)	NPR = 1.0 (jet off) total aft-end yawing mo-	
$C_{D,\mathrm{aft}}$	(CDAFT)	NPR = 1.0 (jet off) afterbody drag coefficient			ment including thrust component, $\frac{\text{Yawing moment}}{q_{\infty}Sb}$	
$C_{D,n}$	(CDN)	nozzle drag coefficient	C_p		pressure coefficient,	
C_{D-F}	(C(D-F))	drag-minus-thrust coeffi-			$(p-p_{\infty})/q_{\infty}$	
· D=F	(0(21))	cient, $\frac{\text{Drag} - \text{Thrust}}{q_{\infty}S}$	C_Y		total aft-end side-force coefficient, $C_Y \equiv C_{Y,t}$ at	
C_L	(CL)	total aft-end aerodynamic	C		NPR = 1.0 (jet off)	
		lift coefficient, $C_L \equiv C_{L,t}$ at NPR = 1.0 (jet off)	$C_{Y,t}$		total aft-end side-force coefficient including thrust	
$C_{L,\mathrm{aft}}$	(CLAFT)	afterbody lift coefficient			coefficient, $\frac{\text{Side force}}{q_{\infty}S}$	
$C_{L,n}$	(CLN)	nozzle lift coefficient	\overline{c}		wing mean geometric chord, 17.42 in.	
$C_{L,t}$	(CLT)	total aft-end lift coefficient, including thrust component,	D	,	drag, lbf	
		Lift $q_{\infty}S$	D_f	:	friction drag, lbf	
$C_{L_{\delta_{m{v}}}}$		lift effectiveness due to thrust vectoring, per degree	F		thrust along stability axis,	
C_l	(CROLL)	total aft-end rolling-moment	F_A	Í	total aft-end axial force, lbf	
-	,	coefficient, $C_l \equiv C_{l,t}$ at NPR = 1.0 (jet off)	$F_{A,\mathrm{Mbal}}$		axial force measured by main balance, lbf	

$F_{A,\mathrm{mom}}$		momentum tare axial force due to bellows, lbf	$\overline{p}_{\mathrm{es,2}}$	average static pressure at external seal at FS 48.25, psi		
$F_{A,\mathrm{Sbal}}$		axial force measured by afterbody shell balance, lbf	$\overline{p}_{\mathrm{es,3}}$	average static pressure at external seal at FS 66.25,		
$F_{ m aft}$		afterbody axial force, lb		psi		
F_G		resultant gross thrust, $\sqrt{F_j^2 + F_N^2 + F_S^2}$, lbf	\overline{p}_i	average internal static pressure, psi		
F_i		ideal isentropic gross thrust, $w_p \left\{ \frac{RT_{t,j}}{g^2} \frac{2\gamma}{\gamma - 1} \left[1 - \frac{1}{2\gamma} \right] \right\}$	$p_{t,j}$	average jet total pressure, psi		
		$w_p \left\{ \frac{g^2}{g^2} \frac{\gamma - 1}{\gamma - 1} \right\}^{1/2}, \text{ lbf}$	p_{∞}	free-stream static pressure, psi		
F_{j}		measured thrust along body axis, lbf	q_{∞}	free-stream dynamic pres- sure, psi		
F_N		measured jet normal force, lbf	R	gas constant, 1716 ft ² / sec^2 -°R		
F_S		measured jet side force, lbf	S	wing reference area,		
g		gravitational constant,		664.4 in^2		
		$32.174 ext{ ft/sec}^2$	S_t	horizontal tail area, in^2		
L		length from nozzle attachment station (FS 66.30) to nozzle exit, used in coordi-	$T_{t,j}$	average jet total temperature, °R		
L_j		nate system of figure 6(a) length from moment ref-	\overline{V}	volume coefficient (see the appendix)		
J		erence center to nozzle throat, in.	w_i	ideal weight-flow rate, lbf/sec measured weight-flow rate, lbf/sec		
L_t		length from moment reference center to quarter-chord of horizontal tail mean	w_p			
l		geometric chord, in. length from nozzle throat to nozzle exit, used in coordinate system of figure 6(b), in.	X	axial distance measured from nozzle attachment sta- tion (FS 66.30), positive downstream, used in coor- dinate system of figure 6(a),		
M	(MACH)	free-stream Mach number		in.		
NPR	(NPR)	nozzle pressure ratio, $p_{t,j}/p_{\infty}$ or $p_{t,j}/p_a$	x	axial distance measured from nozzle throat, positive		
$(NPR)_{de}$	s	nozzle pressure ratio required for fully expanded flow		downstream, used in coordinate system of figure 6(b), in.		
p		local static pressure, psi	Y	lateral distance measured		
p_a		ambient pressure, psi		from model centerline, positive to left (outboard)		
$\overline{p}_{\mathrm{es},1}$		average static pressure at external seal at FS 44.75, psi		looking downstream, used in coordinate system of figure 6(a), in.		

y		lateral distance measured from nozzle centerline, positive to left (outboard) looking downstream, used in coordinate system of figure 6(b), in.
α	(ALPHA)	angle of attack, deg
γ		ratio of specific heats, 1.3997 for air
δ_p		resultant pitch vector angle, $\tan^{-1} \frac{F_N}{F_j}$, deg
$\delta_{v,p}$		geometric pitch vector angle measured from nozzle centerline, positive for downward deflection angles, deg
δ_y		resultant yaw vector angle, $\tan^{-1} \frac{F_S}{F_i}$, deg
Abbreviat	ions:	•
A/B		afterburning
BL		butt line, in.
C-D		convergent-divergent
FS		fuselage station (axial location described by

Apparatus and Procedure

Wind Tunnel

STOL

WL

2-D

This investigation was conducted in the Langley 16-Foot Transonic Tunnel, a single-return atmospheric wind tunnel with a slotted octagonal test section and continuous air exchange. The wind tunnel has variable airspeeds up to a Mach number of 1.30. Test-section plenum suction is used for speeds above a Mach number of 1.05. A complete description of this facility and operating characteristics can be found in reference 17.

distance in inches from

short takeoff and landing

model nose)

waterline, in.

two-dimensional

Model and Support System

Details of the general research twin-engine fighter model and wingtip-mounted support system used in this investigation are presented in figure 1. A photograph of the model and support system installed in the Langley 16-Foot Transonic Tunnel is shown in figure 2. A sketch of the wing planform geometry is presented in figure 3.

The wingtip model support system shown in figure 1 consisted of three major portions: the twin support booms, the forebody (nose), and the wing/centerbody. These pieces made up the nonmetric portion (that portion of the model not mounted on force balance) of the twin-engine fighter model. The fuselage centerbody was essentially rectangular in cross section and had a constant width and height of 10.00 in. and 5.00 in., respectively. The four corners were rounded by a radius of 1.00 in. The maximum cross-sectional area of the centerbody (fuselage) was 49.14 in². The support system forebody (or nose) was typical of a powered model in that the inlets were faired over. The wings were mounted above the model centerline in a high position that is typical of many current fighter designs. The wing had a 45° leading-edge sweep, a taper ratio of 0.5, an aspect ratio of 2.4, and a cranked trailing edge (fig. 3). The NACA 64-series airfoil had an airfoil thickness ratio of 0.067 near the wing root. From BL 11.00 to the support booms, however, wing thickness ratio increased from 0.077 to 0.10 to provide adequate structural support for the model and to permit the transfer of compressed air from the booms to the model propulsion system.

The wingtip support system has the unique feature of being able to rotate the wing with respect to the support booms. This allows testing of models to high angles of attack while keeping the model near the tunnel centerline. A detailed description of the wingtip support system is given in reference 17.

The metric portion of the model aft of FS 44.75, supported by the main force balance, consisted of the internal propulsion system, afterbody, tails, and nozzles. The afterbody lines were chosen to provide a length of constant cross section aft of the nonmetric centerbody and to enclose the force balance and jet simulation system while fairing smoothly downstream into the closely spaced nozzles. The afterbody shell from FS 48.25 to 66.25 was attached to an afterbody force balance that was attached to the main force balance (fig. 1). The main force balance in turn was grounded to the nonmetric wing/centerbody sec-The nozzles were attached directly to the main force balance through the propulsion system piping. Three clearance gaps (metric breaks) were provided between the nonmetric and individual metric portions (afterbody and nozzles) of the model at FS 44.75, 48.25, and 66.25 to prevent fouling of the components upon each other. A flexible plastic strip

inserted into circumferentially machined grooves in each component impeded flow into or out of the internal model cavity (fig. 1).

In this report, that section of the model aft of FS 48.25 is referred to as the total aft end (which includes afterbody and nozzles). That section of the model from FS 48.25 to 66.25 is referred to as the afterbody, and that section aft of FS 66.25 is considered the nozzles. An adjustment to the drag results of the main balance was made for the section of the model from FS 44.75 to 48.25. (See the appendix.)

Twin-Jet Propulsion Simulation System

The twin-jet propulsion simulation system is shown in figure 1. An external high-pressure air system provided a continuous flow of clean, dry air at a controlled temperature of about 70°F at the nozzles. This high-pressure air was brought into the wind-tunnel main support strut where it was divided into two separate flows and passed through remotely operated flow-control valves. These valves were used to balance the total pressure in each nozzle.

The divided compressed airflows were piped through the wingtip support booms, through the wings, and into the flow-transfer (bellows) assemblies (fig. 1). A sketch of a single flow-transfer bellows assembly is shown in figure 4. The air in each supply pipe was discharged perpendicularly to the model axis through six sonic nozzles equally spaced around the supply pipe. This method was designed to minimize any transfer of axial momentum as the air passed from the nonmetric portion to the metric portion of the model. Two flexible metal bellows were used as seals and served to compensate for the axial forces caused by pressurization. The cavity between the supply pipe and bellows was vented to model internal pressure. The airflow then passed through the tail pipes into the transition sections, through choke plates (30 percent of the tail pipe open area), to the instrumentation or charging sections, and then to the exhaust nozzles. (See fig. 1.)

Exhaust Nozzles

The two-dimensional convergent-divergent (2-D C-D) nozzle is a nonaxisymmetric exhaust system in which a symmetric contraction and expansion process takes place internally in the vertical plane. Basic nozzle components consist of upper and lower flaps to regulate the contraction and expansion process and flat nozzle sidewalls to contain the flow laterally. The flap inner-surface geometry (on full-scale hard-

ware) can be varied or altered by actuators so that (1) the engine power setting can be changed by varying the throat height and (2) the expansion surface angle (the flat surface downstream of the throat) can be varied for optimum expansion of the exhaust flow (ref. 19). The 2-D C-D nozzle can be designed to vector the exhaust flow up or down (in the pitch plane) by rotating the upper and lower flaps independently.

The subscale 2-D C-D nozzle models tested during this investigation are shown in figure 5. These nozzles are fixed-geometry representations of a variable-geometry nozzle at dry power and partial afterburning (A/B) power settings. The nozzle models were sized to the twin-engine wingtip-supported propulsion simulator by selecting values of the ratio of total nozzle throat area to maximum fuselage cross-sectional area $(2A_t/A_{\rm max})$ that were representative of current twin-engine high-performance aircraft installations. The values of nozzle internal expansion ratio selected for testing were based on typical current, full-scale, mixed-flow turbofan cycles. A summary of important geometric parameters is given in the following table:

Power setting	A_t , in.	A_e/A_t	$2A_t/A_{ m max}$	AR	(NPR) _{des}
Dry	2.69	1.16	0.11	3.45	3.46
A/B	3.92	1.24	.16	2.39	4.17

Various combinations of nozzle flap and sidewall geometry were examined as seen in figure 5. Three basic upper and lower flap arrangements were tested: unvectored flaps, pitch-vectored A/B flaps, and unvectored dry power flaps. The pitch vectoring was produced by a simple 15° downward rotation of the unvectored A/B nozzle divergent flaps. The sidewall geometry variations used with each of the upper and lower flap arrangements are indicated in figure 5(b). The A/B sidewalls were designed to fair smoothly with the external lines of the A/B flaps. When paired with the dry power flaps, the A/B sidewalls provide small external flow fences. Conversely, the dry power sidewall (designed to fair with the dry power flaps) allows some internal flow ventilation when combined with the A/B flaps.

The effects of sidewall cutback were investigated on both the unvectored and pitch-vectored A/B flaps as seen in figure 5(b). The baseline or 100-percent A/B sidewall provided full exhaust flow containment over the entire divergent flap of the unvectored nozzle. The 50- and 25-percent sidewall cutbacks provided one-half and one-quarter containment, respectively, of the unvectored A/B divergent flap length.

Because sidewall base areas were held constant, sidewall boattail angle varied with sidewall cutback as shown in the view labeled "Top view."

The sidewall variations discussed in the previous paragraphs refer only to the outboard sidewall of each nozzle. For the closely spaced twin-nozzle arrangement of the present investigation, a common inboard sidewall (splitter plate) is more practical than individual sidewalls. The splitter plate geometry was constant throughout the entire investigation. This splitter plate represented two baseline A/B sidewalls (with 100-percent containment) located back to back. The splitter plate is identified in the sketch of figure 5(a) and the photograph of figure 5(c).

Yaw vectoring was provided by an asymmetric combination of sidewall lengths on the A/B nozzle flaps. A 100-percent A/B sidewall was located outboard on the left nozzle, and a 25-percent A/B sidewall was located outboard on the right nozzle. This combination of sidewall cutback represented a yaw-vectoring concept called the translating sidewall concept. In a full-scale application, a single sidewall would translate, whereas the opposite sidewall remained in the full containment position. This lateral asymmetry would produce a yaw vector angle whose magnitude can be varied by varying the amount of sidewall translation. A more detailed discussion of this yaw-vectoring concept is contained in reference 14.

Instrumentation

Forces and moments on the metric portions of the model were measured by two six-component strain gauge balances. The main balance measured forces and moments resulting from nozzle gross thrust and the external flow field over that portion of the model aft of FS 44.75. The afterbody balance measured forces and moments resulting from the external flow field over the afterbody from FS 48.25 to 66.25. This twin balance arrangement permits the separation of model component forces for data analysis.

External static pressures were measured at eight points in the seal gap at the first metric break (FS 44.75). All orifices were located on the nonmetric centerbody and spaced symmetrically about the model perimeter. An additional five orifices positioned about the right side of the model measured seal gap pressures at the second metric break (FS 48.25). The third and final set of seal pressures was measured by two pairs of surface taps, each an equal distance fore and aft of the third metric break (FS 66.25).

In addition to these external pressures, two internal pressures were measured at each metric seal.

These pressure measurements were then used to correct measured axial force and pitching moment for pressure area tares as discussed in the appendix.

Chamber pressure measurements made in each supply pipe, upstream of the six sonic nozzles (fig. 4), were used to compute mass-flow rates for each nozzle and were also used to compute tare forces. Instrumentation in each charging section consisted of a stagnation-temperature probe and a total-pressure rake. Each rake contained four total-pressure probes. (See fig. 5.) Nozzle total pressure was determined from these measurements.

External and internal static pressures were measured on the two A/B power nozzles. The orifice locations are shown in figure 6. External pressures were measured on the right nozzle (looking upstream). The external orifices were arranged in three rows along the top surface of the convergent and divergent flaps of the nozzle. Internal static pressures were measured on the left nozzle (looking upstream). The internal orifices were located only along the divergent flap, starting at the nozzle throat. A single row of orifices was placed along the centerline of the top flap, and three rows of orifices were placed along the surface of the bottom flap. All pressures were measured with individual pressure transducers. Data obtained during each tunnel run were recorded on magnetic tape. Typically, for each data point, 50 frames of data were taken over a period of 5 sec and the average was used for computational purposes.

Tests

This investigation was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers of 0, 0.15, 0.60, 0.90, and 1.20 and at angles of attack from -2° to 35° . The nozzle pressure ratio varied from 1.0 (jet off) to 9.0 depending upon Mach number. Most model configurations were tested at angles of attack from -2° to 18° . Selected configurations were subsequently tested over an angle-of-attack range from about 16.6° to 35°. This was accomplished by presetting wing incidence through rotation of the wings with respect to the wing support booms. Basic data were obtained by varying nozzle pressure ratio at an angle of attack of 0° and by varying angle of attack at jet off and at a fixed (different for each Mach number) nozzle pressure ratio. The fixed nozzle pressure ratio tested at each Mach number represented a typical operating pressure ratio for a turbofan engine at that Mach number. The Reynolds number based on the wing mean aerodynamic chord varied from 4.4×10^6 to 5.28×10^6 .

All tests were conducted with 0.10-in-wide boundary-layer transition strips consisting of No. 120 silicon carbide grit sparsely distributed in a thin film

of lacquer. A single strip was located 1.00 in. from the tip of the forebody nose. Additional transition strips were placed on both upper and lower surfaces of the wings at 5 percent of the root chord to 10 percent of the tip chord.

Presentation of Results

The results of this investigation are presented in both tabular and plotted form. Table 1 is an index to the results contained in tables 2 to 13. The computer symbols appearing in these tables are defined in the Symbols section of the paper with their corresponding mathematical symbols. Only data for the A/B powered nozzle are presented in plotted form in this report. However, all data are tabulated.

Discussion

Pitch Thrust Vectoring

Static performance. The effect of cutback sidewalls on nozzle static performance for the afterburner power nozzles with geometric pitch vector angles of 0° and 15° is presented in figures 7 and 8, respectively. Static nozzle performance is presented as internal thrust ratio F/F_i , internal gross thrust ratio F_G/F_i , resultant pitch vector angle δ_p , and nozzle discharge coefficient w_p/w_i . Both cutback sidewall nozzle configurations at $\delta_{v,p}=0^{\circ}$ had higher thrust performance than the full sidewall configuration at overexpanded conditions (NPR less than design NPR). Similar effects were found for the dry power nozzle (ref. 20).

Peak nozzle performance occurred between nozzle pressure ratios of 4 and 5. Typically, the peak nozzle performance is obtained at the jet nozzle pressure ratio required for fully expanded flow (the design pressure ratio), which for the current nozzles is 4.17. There is no effect of sidewall cutback on internal gross thrust ratio at peak nozzle performance conditions (fig. 7). Thus, there is no indication that cutback sidewalls caused a decrease in the effective expansion ratio of the nozzle that would have resulted in peak performance occurring at a lower nozzle pressure ratio. Earlier investigations showed that a reduction in effective nozzle expansion ratio would be expected with cutback sidewalls (refs. 12 and 20).

The effect of cutback sidewalls on nozzle performance for the nozzle with a pitch vector angle of 15° is presented in figure 8. As was the case for the unvectored nozzle, both cutback sidewall nozzle configurations had a higher thrust performance than the nozzle with full sidewalls at overexpanded conditions. Differences in peak nozzle

performance were less than 1 percent of the internal gross thrust ratio. A comparison between the unvectored and vectored nozzles shows similar gross thrust ratios indicating little or no losses due to flow turning. The pitch-vectoring concept was very effective in that resultant pitch vector angles were produced that were greater than the geometric pitch angle of 15° at all nozzle pressure ratios tested. Such large pitch vector angles, typical of pitch vectoring by differential flap deflection (refs. 9 to 13), are caused in part by local overexpansion at the nozzle throat on the lower flaps of the nozzle. This very localized region of overexpanded flow forms immediately downstream of the throat and forces the exhaust flow to overturn before expanding onto the lower flap.

Basic aeropropulsive performance. The effect of cutback sidewalls on basic aeropropulsive performance with the nozzle at zero pitch vector angle is presented in figure 9. The variation of the aeropropulsive parameter $(F-D)/F_i$ and total aftend drag coefficient with nozzle pressure ratio is presented for Mach numbers from 0.60 to 1.20. As expected, because of increased drag, the aeropropulsive performance of all configurations decreased with increasing Mach number. Consistent trends with a cutback sidewall are not evident at subsonic Mach numbers (fig. 9(a)). However, differences in aeropropulsive performance of less than 1 percent occurred at typical operational pressure ratios. At M = 1.20, the nozzle configuration with the 100-percent sidewalls had the highest aeropropulsive performance over the entire NPR range tested.

At subsonic speeds, there are no consistent trends in aft-end drag as the nozzle sidewall is cut back (fig. 9(b)). However, the configuration with the 100-percent sidewalls had the lowest jet-off drag coefficient at all Mach numbers tested, and the configuration with the 25-percent sidewalls had the highest drag. This probably results from the cutback sidewalls having a steeper boattail angle than that of the full sidewall (fig. 5(b)).

Pitch vectoring at forward speeds. The effect of cutback sidewalls on total longitudinal characteristics for the nozzles with geometric pitch vector angles of 0° and 15° at $\alpha=0^{\circ}$ is presented in figures 10 and 11, respectively. Generally, the effect of cutback sidewalls was small. Similar results (not shown in the figure) were found at $\alpha=20^{\circ}$ between the 100-percent and 25-percent sidewalls at M=0.15 and 0.60. (See tables 2 and 4.)

The increment in C_L or C_m between $\delta_{v,p}=0^\circ$ (fig. 10) and $\delta_{v,p}=15^\circ$ (fig. 11) at jet-off conditions (NPR = 1.0) results from the aerodynamic flap effect

of the deflected nozzle divergent flaps. (See fig. 5.) As nozzle pressure ratio increases, C_L increases and C_m becomes more negative for the pitch-vectored configuration. The increase in lift coefficient with increasing NPR is due primarily to the jet lift component of the nozzle gross thrust and some jet-induced lift. Jet-induced lift can be determined from the total aft-end aerodynamic lift coefficient C_L presented in tables 7 to 9. For this configuration with the 100-percent sidewalls, jet-induced lift varied from about 20 to 30 percent of the total aft-end aerodynamic lift coefficient C_L at Mach numbers from 0.60 to 1.20. Similar results were obtained in reference 13.

The drag-minus-thrust coefficient varies nearly linearly with nozzle pressure ratio regardless of pitch thrust vector angle. The differences between C_{D-F} for $\delta_{v,p}=0^\circ$ and C_{D-F} for $\delta_{v,p}=15^\circ$ result both from thrust losses caused by turning the exhaust vector away from the axial direction and from generally higher drag on the $\delta_{v,p}=15^\circ$ configuration. (See table 7.) Increasing the magnitude of negative numbers for C_{D-F} indicates improved performance from either higher thrust or lower drag.

The effect of angle of attack on the total aftend longitudinal aerodynamic characteristics for the nozzle with 100-percent and 25-percent sidewalls is presented in figures 12 and 13, respectively. The increment in lift or pitching-moment coefficient that results from changing the nozzle pitch vector angle from 0° to 15°, at either jet-off or jet-on conditions, remains essentially constant over the entire angle-of-attack range for all Mach numbers tested. Thus, there is also no effect of pitch thrust vectoring on lift-curve slope and longitudinal stability characteristics. Similar results are reported in references 9 and 10.

Longitudinal control power. Longitudinal control power and lift effectiveness due to thrust vectoring are presented in figure 14. These parameters at a constant Mach number are only a function of nozzle pressure ratio because the aerodynamic increments that resulted from thrust vectoring were independent of angle of attack. The decrease in control power that occurs as Mach number increases is the result of a decrease in thrust (at constant NPR). The decrease in thrust is caused primarily by the decrease in freestream static pressure as Mach number increases and, to a lesser extent, by free-stream dynamic pressure effects.

A comparison of longitudinal control power $C_{m_{\delta}}$ from powered and aerodynamic controls is presented in figure 15 as a function of Mach number at $\alpha = 0^{\circ}$. Longitudinal control power from pitch vectoring was obtained for each Mach number shown at a typical operating pressure ratio. These operating

pressure ratios are indicated in the keys of figure 12. Longitudinal control power from pitch vectoring 2-D C-D nozzles on an F-18 aircraft model (ref. 13) and a supersonic cruise fighter (ref. 10) is shown in figure 15. Longitudinal control power generated by the horizontal tail for the current configuration (ref. 21), for the F-18 aircraft model (ref. 13), and by a canard (ref. 10) is also presented in this figure. Note that symbols are used to distinguish longitudinal control power from pitch vectoring and that lines are used to denote aerodynamic controls.

At low speed, pitch vectoring provided a significant increase in longitudinal control power when compared with the horizontal tail (fig. 15). Similar results for the other configurations are presented in reference 9. The decrease in value of the powered controls with increasing Mach number is caused by the decrease in thrust discussed previously. Because aerodynamic controls are usually sized for low speed, they are generally more effective than is required at high speeds. Thus, thrust vectoring could be used to augment the control power provided by aerodynamic controls, particularly at low speeds. For an aircraft design utilizing pitch thrust vectoring to augment aircraft control, the size of the aerodynamic surfaces could be reduced, and this reduction would likely reduce the drag.

Yaw Thrust Vectoring

Static performance. The effect of yaw thrust vectoring utilizing asymmetric sidewall cutback (translating sidewall concept) at static conditions is presented in figure 16. This yaw-vectoring concept produced rather small (less than 3°) values of resultant yaw vector angles. At overexpanded nozzle operating conditions (NPR < (NPR)_{des}), the measured yaw vector angles were positive; at underexpanded nozzle operating conditions (NPR > 4.2), the yaw vector angles were negative. This effect of thrust direction varying with pressure ratio is common in nonaxisymmetric nozzles whenever one flap is longer than the other relative to the exhaust flow centerline. It occurs for both unvectored and vectored single-expansion-ramp nozzles (see, for example, refs. 13 and 22) and some vectored 2-D C-D nozzles where rotation of the individual flaps takes place about axes near the throat. This type of nozzle geometry presents expansion surfaces of unequal length for the flow to work against; thus, one side of the exhaust flow is contained longer by a flap (in this investigation, by the inboard sidewall) while the other side of the exhaust flow is unbounded. The change in the direction of the resultant yaw vector angles as nozzle operation changes from overexpanded to

underexpanded indicates that the translating sidewall concept may not be feasible in generating directional control at transient engine operating conditions. This trend in yaw vector angle with increasing NPR was reported as a result of an earlier static study (ref. 15). However, the magnitude of the resultant yaw angles is so small (see fig. 16) that little useful directional control could be provided over the range of NPR's tested. Larger yaw vector angles at higher nozzle pressure ratios would result from translating the sidewall up to or past the nozzle throat, but such sidewall translation would probably decrease F_G/F_i . (See ref. 15.)

Yaw vectoring at forward speeds. The effect of yaw thrust vectoring on the total aft-end lateral aerodynamic characteristics is presented in figures 17 and 18. The variation of the lateral characteristics with NPR at $\alpha = 0^{\circ}$ is shown in figure 17, whereas the effect of angle of attack with jet off and constant NPR is shown in figure 18.

The variations in wind-on lateral characteristics with NPR shown in figure 17 would be expected from the static results discussed previously. (See fig. 16.) The changes in direction of both $C_{n,t}$ and $C_{Y,t}$ are caused by the change in directions of δ_y as the nozzle operation changes from overexpanded to underexpanded conditions. Thus, as discussed earlier, yaw vectoring by truncated sidewalls may not be feasible in producing positive yaw control over the operational NPR range without further nozzle geometry variations. As shown in figure 18, yawing moment and the increment in C_n resulting from sidewall translation were essentially independent of angle of attack. The insensitivity of the C_n increment to α is identical to the results discussed previously for pitch thrust vectoring on the longitudinal characteristics.

Internal Static Pressure Distributions

Internal static pressure distributions for the A/B power nozzle with 100-percent sidewalls and $\delta_{v,p}=0^\circ$ are presented in figure 19. As shown in figure 6(b), pressures were measured along the centerline of the top and bottom divergent flap as well as outboard and inboard locations on the bottom divergent flap. In general, the measured internal static pressure distributions are similar to those measured in conventional round nozzles. For NPR = 2.0 at M=0, for example, the static pressures on the nozzle (fig. 19(a)) show a typical sudden pressure rise across the exhaust-flow normal shock. As expected, there was little or no effect of external flow on the internal pressure distributions at constant NPR.

The effect of nozzle pressure ratio on the internal

static distributions for the A/B power nozzle with the 100-percent sidewalls and $\delta_{v,p} = 15^{\circ}$ is presented in figure 20. The results indicate a highly inclined throat at static conditions as the flow becomes sonic $(p/p_{t,j} = 0.528)$ on the top flap at x/l = 0.67. There is little or no effect of Mach number on these internal static pressure distributions at constant NPR (fig. 20).

The effect of 50- and 25-percent-cutback sidewalls on internal nozzle pressure characteristics is shown in figures 21 and 22, respectively. As shown, the initial 50-percent-cutback sidewall produces flow separation along the outboard portion of the bottom flap (fig. 21(a)). Additional truncation of the sidewall enlarges the separation region and begins to affect the nozzle centerline pressures along the bottom flap (fig. 22(a)). As would be expected, the separated region on the nozzle flap decreases as nozzle pressure ratio is increased. Similar effects due to cutback sidewalls would be expected to occur for the unvectored nozzle and are typical for this type of nozzle (refs. 20 and 22). There was little or no effect of external flow on the internal static pressure distribution at constant NPR.

External Static Pressure Distributions

Afterbody/nozzle pressure distributions for the model with a nozzle pitch vector angle of 0° and 100percent sidewalls are presented in figure 23. Pressures were measured only on the top surface of the afterbody/nozzle as shown in figure 6(a). These pressure distributions show typical results of a large expansion at the start of the afterbody boattail and a recompression along the afterbody and nozzle. At subsonic speeds, pressure recovery to positive values of pressure coefficient on the nozzle with the 100percent sidewalls (fig. 23) can produce negative values of nozzle drag as previously reported in reference 23 for the configuration with the nozzle in the dry power mode. Figures 24 and 25 present similar afterbody/nozzle pressure distributions for the nozzles with 50- and 25-percent-cutback sidewalls and show essentially no effect of cutback sidewall.

The effect of nozzle pressure ratio on afterbody/ nozzle pressure distributions for the model with a nozzle pitch vector angle of 15° and 100-percent sidewalls is presented in figure 26. Thrust vectoring reduces the recompression of the flow on the afterbody/ nozzle upper surfaces. In general, vectoring tends to increase pressures on the lower surface of the configuration which generally results in some induced lift being generated.

The effect of cutback sidewall on the afterbody/ nozzle pressure distributions is presented in figures 27 to 30 for the pitch-vectored nozzle. At NPR < 3.5,

pressures are more positive as the nozzle sidewalls are cut back, whereas at NPR = 6.0, pressures are more negative. The largest effect of the cutback sidewall occurs on the outboard portion of the surface of the afterbody/nozzle. As nozzle pressure ratio increases, jet entrainment effects probably dominate the flow field and more negative pressures result from the pumping action of the vectored exhaust. However, there is probably a pressurization of the lower surface under these conditions because cutback sidewalls had little or no effect on the afterbody forces and moments (fig. 11).

Conclusions

An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the thrust vectoring capability of two-dimensional convergent-divergent nozzles installed on a twin-engine general research fighter model. Pitch vectoring was accomplished by differential deflection of the nozzle upper and lower divergent flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch-vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers from 0 to 1.20, at angles of attack from -2° to 35° , and at nozzle pressure ratios up to 9. An analysis of the results of this investigation indicates the following conclusions:

1. Nozzle sidewall cutback caused little or no effect on peak static nozzle performance for both unvectored and pitch-vectored nozzles.

- 2. Thrust-minus-drag performance for the unvectored nozzle configurations varied less than 1 percent at subsonic speeds, thus showing the relative insensitivity of installed performance to nozzle sidewall cutback.
- 3. At static conditions, resultant pitch vector angle was always greater than the geometric pitch vector angle.
- 4. The increment in either the force or moment coefficient that resulted from pitch or yaw vectoring remained essentially constant over the entire angle-of-attack range for all Mach numbers tested.
- 5. Longitudinal control power was a function of nozzle pressure ratio and Mach number. Powered controls were very effective at low Mach numbers, but their effectiveness decreased as Mach number increased because of a reduction in thrust.
- 6. Longitudinal control power from thrust vectoring was greater than that provided by aerodynamic controls at low speeds.
- 7. The yaw vectoring configuration tested was ineffective at producing yaw vectoring at nozzle pressure ratios typical for operation at subsonic Mach numbers. Negative yaw vector angles were generated at underexpanded nozzle operating conditions, but positive yaw vector angles were found at overexpanded nozzle operating conditions for a nozzle using a single cutback sidewall to produce yaw thrust vectoring.

NASA Langley Research Center Hampton, VA 23665-5225 December 5, 1989

Appendix

Data Reduction and Calibration Procedure

Calibration Procedure

The main balance measured the combined forces and moments due to nozzle gross thrust and the external flow field of that portion of the model aft of FS 44.75. The afterbody balance measured the forces and moments due to the external flow field exerted over the afterbody between FS 48.25 and 66.25.

Force and moment interactions exist between the bellows-flow transfer system (fig. 4) and the main force balance because the centerline of this balance is below the jet centerline (fig. 1). Consequently, single and combined loadings of normal force, axial force, and pitching moment were made with and without the jets operating with Stratford calibration nozzles (ref. 17). These calibrations are performed with the jets operating because this condition gives a more realistic effect of pressurizing the bellows than does capping off the nozzles and pressurizing the flow system. Thus, in addition to the usual balance-interaction corrections applied for a single force balance under combined loads, another set of interactions was applied to the data from this investigation to account for the combined loading effect of the main balance with the bellows system. These calibrations were performed over a range of expected normal forces and pitching moments. Note that this procedure is not necessary for the afterbody balance because the balance is not bridged by the flow system.

Data Corrections

In order to achieve desired axial-force terms, the axial forces measured by both force balances must also be corrected for pressure-area tare forces acting on the model, and the main balance must be corrected for momentum tare forces caused by flow in the bellows. The external seal and internal pressure forces on the model were obtained by multiplying the difference between the average pressure (external seal or internal pressures) and free-stream static pressure by the affected projected area normal to the model axis. The momentum tare force was determined from calibrations using the Stratford choke nozzles prior to the wind-tunnel investigation.

Axial force minus thrust was computed from the main balance axial force from the following relationship:

$$F_A - F_j = F_{A,\text{Mbal}} + (\overline{p}_{\text{es},1} - p_{\infty})(A_{\text{mb},1} - A_{\text{seal},1})$$
$$+ (\overline{p}_i - p_{\infty})A_{\text{seal},1} - F_{A,\text{mom}} - D_f \tag{A1}$$

where the first term $F_{A,\text{Mbal}}$ includes all pressure and viscous forces (internal and external on both the afterbody and thrust system). The second and third terms account for the forward seal rim and interior pressure forces, respectively. In terms of an axial-force coefficient, the second term ranges from -0.0001 to -0.0007 and the third term varies ±0.0075 depending upon Mach number and pressure The internal pressure at any given set of test conditions was uniform throughout the inside of the model, thus indicating no cavity flow. The momentum tare force $F_{A,\text{mom}}$ is a momentum tare correction with jets operating and is a function of the average bellows internal pressure, which is a function of the internal chamber pressure in the supply pipes just ahead of the sonic nozzles (fig. 5). Although the bellows were designed to minimize momentum and pressurization tares, small bellows tares still exist with the jet on. These tares result from small pressure differences between the ends of the bellows when internal velocities are high and also from small differences in the spring constants of the forward and aft bellows when the bellows are pressurized. The last term D_f is the friction drag of the section from FS 44.75 to 48.25. A friction drag coefficient of 0.0004 was applied at all Mach numbers. No corrections were applied to the forces and moments for the effects of angle of attack on this section.

The afterbody axial force is computed from a similar relationship:

$$\begin{split} F_{\mathrm{aft}} &= F_{A,\mathrm{Sbal}} + \left(\overline{p}_{\mathrm{es},2} - p_{\infty}\right) \left(A_{\mathrm{mb},1} - A_{\mathrm{seal},1}\right) \\ &+ \left(\overline{p}_{i} - p_{\infty}\right) A_{\mathrm{seal},2} + \left(\overline{p}_{\mathrm{es},3} - p_{\infty}\right) \\ &+ \left(A_{\mathrm{mb},2} - A_{\mathrm{seal},2}\right) \end{split} \tag{A2}$$

Since both balances are offset from the model centerline, similar adjustments are made to the pitching moments measured by both balances. These adjustments are necessary because both the pressure area and bellows momentum tare forces are assumed to act along the model centerline. The pitching-moment tare is determined by multiplying the tare force by the appropriate moment arm and subtracting the value from the measured pitching moments.

Model Attitude

The adjusted forces and moments measured by both balances are transferred from the body axis of the metric portion of the model to the stability axis. The attitude of the nonmetric forebody relative to gravity was determined from a calibrated attitude indicator located in the model nose. The angle of attack α , which is the angle between the afterbody centerline and the relative wind, was determined by applying terms for afterbody deflection (caused when the model and balance bend under aerodynamic load) and a flow angularity term to the angle measured by the attitude indicator. The flow angularity correction was 0.1° , which is the average angle measured in the Langley 16-Foot Transonic Tunnel.

Thrust-Removed Data

The resulting external and internal thrust force and moment coefficients from the main balance include total lift coefficient $C_{L,t}$, drag minus thrust coefficient C_{D-F} , total pitching-moment coefficient $C_{m,t}$, total rolling-moment coefficient $C_{l,t}$, total-yawing-moment coefficient $C_{n,t}$, and total side-force coefficient $C_{Y,t}$. Force and moment coefficients from the afterbody balance are afterbody lift coefficient $C_{L,\mathrm{aft}}$, afterbody drag coefficient $C_{D,\mathrm{aft}}$, and afterbody pitching-moment coefficient $C_{m,\mathrm{aft}}$.

The thrust-removed aerodynamic force and moment coefficients for the entire model were obtained by determining the components of thrust in axial force, normal force, pitching moment, rolling moment, yawing moment, and side force, and then by subtracting these values from the measured total (aerodynamic plus thrust) forces and moments. These thrust components at forward speeds were determined from measured static data and were a function of the free-stream static and dynamic pressures. The thrust-removed aerodynamic coefficients are given as follows:

$$C_L = C_{L,t} - \text{Jet lift coefficient}$$
 (A3)

$$C_D = C_{D-F} + \text{Thrust coefficient}$$
 (A4)

$$C_m = C_{m,t}$$
 – Jet pitching-moment coefficient (A5)

$$C_l = C_{l,t}$$
 – Jet rolling-moment coefficient (A6)

$$C_n = C_{n,t}$$
 – Jet yawing-moment coefficient (A7)

$$C_Y = C_{Y,t}$$
 – Jet side-force coefficient (A8)

The nozzle coefficients are obtained by simply combining the measured results from both force balances as follows:

$$C_{L,n} = C_L - C_{L,\text{aft}} \tag{A9}$$

$$C_{D,n} = C_D - C_{D,aft} \tag{A10}$$

$$C_{m,n} = C_m - C_{m,aft} \tag{A11}$$

Volume Coefficients

To facilitate the analysis of control-power characteristics, a powered volume coefficient is defined. (See ref. 9.) The volume coefficient of the horizontal tail is

$$\overline{V} = \frac{S_t}{S} \frac{L_t}{\bar{c}}$$

where S_t is the horizontal tail area and L_t is the distance from the moment reference center to the quarter-chord of the tail. The pitch vectoring powered-volume coefficient is defined as

$$\overline{V} = \frac{2A_t}{S} \frac{L_j}{\bar{c}}$$

where A_t is the nozzle throat area and L_j is the distance from the moment reference center to the nozzle throat. The throat area is multiplied by 2 because the configuration reported on herein is a twin-engine model.

References

- Herbst, W. B.: Future Fighter Technologies. J. Aircr., vol. 17, no. 8, Aug. 1980, pp. 561–566.
- Gallaway, C. R.; and Osborn, R. F.: Aerodynamics Perspective of Supermaneuverability. AIAA-85-4068, Oct. 1985.
- Hienz, Egon; and Vedova, Ralph: Requirements, Definition and Preliminary Design for an Axisymmetric Vectoring Nozzle, To Enhance Aircraft Maneuverability. AIAA-84-1212, June 1984.
- Skow, Andrew M.; Hamilton, William L.; and Taylor, John H.: Advanced Fighter Agility Metrics. AIAA-85-1779, Aug. 1985.
- Miller, L. Earl: Post Stall Maneuvers and Thrust Vectoring Performance Analysis. AFWAL-TR-84-3109, U.S. Air Force, July 1984. (Available from DTIC as AD A158 100.)
- Richey, G. K.; Surber, L. E.; and Berrier, B. L.: Airframe-Propulsion Integration for Fighter Aircraft. AIAA-83-0084, Jan. 1983.
- Nelson, B. D.; and Nicolai, L. M.: Application of Multi-Function Nozzles to Advanced Fighters. AIAA-81-2618, Dec. 1981.
- Mello, J. F.; and Kotansky, D. R.: Aero/Propulsion Technology for STOL and Maneuver. AIAA-85-4013, Oct. 1985.
- Capone, Francis J.; and Mason, Mary L.: Multiaxis Aircraft Control Power From Thrust Vectoring at High Angles of Attack. NASA TM-87741, 1986.
- Capone, Francis J.; and Bare, E. Ann: Multiaxis Control Power From Thrust Vectoring for a Supersonic Fighter Aircraft Model at Mach 0.20 to 2.47. NASA TP-2712, 1987.
- 11. Capone, Francis J.: Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles With Vectoring and Reversing Capability. NASA TP-1224, 1978.
- Capone, Francis J.; and Reubush, David E.: Effects of Varying Podded Nacelle-Nozzle Installations on Transonic Aeropropulsive Characteristics of a Supersonic Fighter Aircraft. NASA TP-2120, 1983.

- 13. Capone, Francis J.; and Berrier, Bobby L.: Investigation of Axisymmetric and Nonaxisymmetric Nozzles Installed on a 0.10-Scale F-18 Prototype Airplane Model. NASA TP-1638, 1980.
- Mason, Mary L.; and Berrier, Bobby L.: Static Investigation of Several Yaw Vectoring Concepts on Non-axisymmetric Nozzles. NASA TP-2432, 1985.
- 15. Mason, Mary L.; and Berrier, Bobby L.: Static Performance of Nonaxisymmetric Nozzles With Yaw Thrust-Vectoring Vanes. NASA TP-2813, 1988.
- Taylor, John G.: A Static Investigation of a Simultaneous Pitch and Yaw Vectoring 2-D C-D Nozzle. AIAA-88-2998, July 1988.
- Peddrew, Kathryn H., compiler: A User's Guide to the Langley 16-Foot Transonic Tunnel. NASA TM-83186, 1981
- Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.; and Sherman, C. D.: Computations for the 16-Foot Transonic Tunnel—NASA, Langley Research Center, Revision 1. NASA TM-86319, 1987. (Supersedes NASA TM-86319, 1984.)
- Stevens, H. L.; Thayer, E. B.; and Fullerton, J. F.: Development of the Multi-Function 2-D/C-D Nozzle. AIAA-81-1491, July 1981.
- Yetter, Jeffery A.; and Leavitt, Laurence D.: Effects of Sidewall Geometry on the Installed Performance of Nonaxisymmetric Convergent-Divergent Exhaust Nozzles. NASA TP-1771, 1980.
- Capone, Francis J.; and Mason, Mary L.: Interference Effects of Thrust Reversing on Horizontal Tail Effectiveness of a Twin-Engine Fighter Aircraft at Mach Numbers From 0.15 to 0.90. NASA TP-2350, 1984.
- Re, Richard J.; and Leavitt, Laurence D.: Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles. NASA TP-2253, 1984.
- Capone, Francis J.; and Carson, George T., Jr.: Effects
 of Empennage Surface Location on Aerodynamic Characteristics of a Twin-Engine Afterbody Model With Nonaxisymmetric Nozzles. NASA TP-2392, 1985.

Table 1. Index to Data in Tables 2 to 13

	Power	Sidewall,	
Table	setting	left/right	$\delta_{v,p},\deg$
2, 3	Afterburner	100/100 A/B	0
4		50/50 A/B	1
5		25/25 A/B	
6		100/100 dry	\downarrow
7		100/100 A/B	15
8		50/50 A/B	15
9		25/25 A/B	15
10, 11	1	100/25 A/B	0
12, 13	Dry	100/25 A/B	0

Table 2. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100 A/B Sidewalls and $\delta_{v,p}=0^\circ$

(a) Total aft end

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.201	.99	.00	0098	.0166	.0031	0098	.0166	.0031
1.202	3.01	.02	0100	0151	.0069	0100	.0158	.0041
1.202	4.96	.04	0109	0450	.0117	0109	.0153	.0060
1.203	6.99	.04	0114	0773	.0156	0115	.0136	.0069
1.202	8.97	.03	0111	1087	.0183	0112	.0121	.0066
1.199	.99	-2.02	0224	.0178	.0137	0224	.0178	.0137
1.202	.98	.01	0091	.0165	.0026	0091	.0165	.0026
1.201	.93	3.01	.0063	.0178	0083	.0063	.0178	0083
1.198	.90	5.98	.0223	.0212	0201	.0223	.0212	0201
1.200	.88	9.03	.0358	.0271	0294	.0359	.0271	0294
1.198	.80	12.02	.0486	.0371	0455	.0487	.0371	0455
1.200	.70	16.01	.0655	.0479	0634	.0656	.0479	0634
1.202	.67	18.01	.0747	.0542	0738	.0748	.0542	0738
1.199	7.03	-2.01	0218	0764	.0203	0186	.0155	.0114
1.201	7.00	02	0093	0769	.0147	0093	.0144	.0060
1.201	6.96	3.02	.0083	0755	.0083	.0036	.0149	0005
1.203	7.02	6.01	.0287	0732	0024	.0192	.0175	0112
1.201	7.05	8.98	.0479	0679	0144	.0337	.0229	0233
1.199	6.99	11.99	.0660	0590	0289	.0471	.0304	0376
1.200	7.00	16.02	.0896	0476	0473	.0645	.0402	0561
1.199	6.99	17.98	.1008	0417	0558	.0726	.0453	0646
.903	1.10	01	0107	.0033	.0059	0107	.0033	.0059
.900	1.98	02	0088	0245	.0066	0088	.0034	.0042
.901	3.01	.00	0097	0511	.0110	0097	.0040	.0059
.898	4.99	.02	0097	1054	.0168	0097	.0033	.0065
.900	7.00	.00	0101	1605	.0224	0101	.0020	.0068
.899	1.10	-2.01	0086	.0033	.0038	0086	.0033	.0038
.902	1.10	02	0090	.0034	.0054	0090	.0034	.0054
.899	1.09	2.99	0044	.0029	.0056	0044	.0029	.0056
.901	1.10	6.01	0062	.0022	.0075	0062	.0022	.0075
.901	1.10	8.99	0021	.0029	.0064	0020	.0029	.0064
.902	1.10	12.01	.0141	.0074	0033	.0142	.0074	0033
.899	1.09	16.01	.0299	.0173	0152	.0300	.0173	0152
.899	1.07	18.02	.0382	.0248	0225	.0384	.0248	0225
.900	5.01	-1.99	0125	1052	.0152	0088	.0033	.0049
.901	5.00	.00	0098	1055	.0169	0098	.0029	.0066
.901	5.01	3.03	.0003	1060	.0167	0054	.0023	.0063
.899	4.99	5.99	.0037	1064	.0190	0076	.0016	.0087
.901	5.00	9.00	.0141	1050	.0175	0028	.0022	.0072
.903	5.01	12.01	.0356	0992	.0075	.0131	.0066	0028
.900	4.99	16.02	.0605	0874	0066	.0307	.0168	0170
.901	5.00	18.01	.0734	0785	0151	.0401	.0245	0254

Table 2. Continued

(a) Continued

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.601	1.03	.01	0111	.0037	.0055	0111	.0037	.0055
.599	1.99	.02	0090	0609	.0101	0090	.0032	.0046
.601	3.00	02	0096	1194	.0171	0096	.0043	.0056
.602	3.52	02	0092	1501	.0199	0092	.0034	.0054
.603	5.01	02	0087	2386	.0283	0087	.0038	.0052
.604	1.03	-1.94	0065	.0052	.0033	0065	.0052	.0033
.600	1.03	.00	0045	.0043	.0031	0045	.0043	.0031
.602	1.03	3.01	0023	.0040	.0032	0023	.0040	.0032
.603	1.03	6.00	.0013	.0042	.0016	.0013	.0042	.0016
.601	1.03	9.00	.0052	.0052	0013	.0052	.0052	0013
.600	1.03	12.02	.0099	.0068	0059	.0100	.0068	0059
.600	1.02	16.00	.0255	.0127	0182	.0256	.0127	0182
.598	1.02	18.03	.0340	.0176	0241	.0341	.0176	0241
.599	3.51	-1.85	0118	1504	.0195	0068	.0040	.0050
.600	3.52	.01	0050	1509	.0187	0050	.0037	.0042
.602	3.51	3.00	.0062	1490	.0176	0018	.0037	.0032
.599	3.50	5.97	.0172	1490	.0165	.0012	.0039	.0021
.598	3.49	8.99	.0296	1471	.0131	.0056	.0049	0013
.599	3.49	12.00	.0429	1437	.0079	.0110	.0067	0066
.600	3.49	15.99	.0692	1346	0055	.0272	.0125	0198
.601	3.50	18.00	.0827	1279	0119	.0356	.0174	0262
.597	1.02	20.01	.0413	.0234	0293	.0415	.0234	0293
.602	2.02	20.01	.0633	0393	0236	.0412	.0218	0292
.602	3.05	20.01	.0843	0958	0189	.0415	.0223	0306
.602	3.51	20.00	.0938	1220	0166	.0416	.0220	0310
.601	5.01	20.02	.1251	2085	0086	.0415	.0213	0320
.600	1.02	16.63	.0267	.0144	0196	.0268	.0144	0196
.599	1.02	17.99	.0321	.0173	0232	.0322	.0173	0232
.599	1.02	19.98	.0396	.0225	0292	.0398	.0226	0292
.600	1.00	23.97	.0572	.0375	0463	.0573	.0375	0463
.600	.99	27.98	.0769	.0584	0714	.0771	.0585	0714
.598	.96	31.99	.0921	.0831	1010	.0923	.0832	1010
.599	3.53	16.79	.0710	1360	0057	.0262	.0129	0203
.599	3.46	17.99	.0785	1281	0098	.0318	.0162	0240
.598	3.49	19.98	.0925	1231	0160	.0402	.0213	0304
.596	3.48	23.96	.1216	1047	0354	.0591	.0364	0499
.600	3.50	27.97	.1542	0771	0661	.0825	.0583	0805
.600	3.50	31.98	.1822	0455	1007	.1013	.0844	1151

Table 2. Continued

(a) Concluded

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.152	1.00	.00	.0073	.0085	0060	.0073	.0085	0060
.153	2.02	01		-1.0161	.0737	.0194	0036	0135
.153	2.60	.00		-1.5133	.1304	.0102	.0141	0083
.153	3.00	.00		-1.8833	.1798	.0055	.0122	.0044
.154	3.81	.00		-2.6051	.2522	.0040	.0018	.0059
.151	1.00	-1.53	.0062	0033	0012	.0062	0033	0012
.151	1.00	01	.0097	.0017	0018	.0097	.0017	0018
.152	1.00	2.98	.0121	0016	0018	.0121	0016	0018
.152	1.00	6.02	.0157	0034	0009	.0157	0034	0009
.152	1.00	8.98	.0247	0005	0065	.0247	0005	0065
.152	1.00	11.99	.0276	.0049	0104	.0276	.0049	0104
.151	1.00	16.02	.0403	.0076	0207	.0404	.0076	0207
.151	1.00	17.99	.0469	.0104	0261	.0471	.0104	0261
.153	2.63	-1.54	0412	-1.5609	.1499	.0011	.0087	.0071
.153	2.65	.04		-1.5664	.1529	0024	.0101	.0094
.154	2.62	3.02	.0846	-1.5270	.1432	.0035	.0100	.0033
.154	2.62	6.00	.1648	-1.5273	.1447	.0034	.0084	.0043
.154	2.63	9.00		-1.5146	.1416	.0083	.0090	.0013
.151	2.62	12.00		-1.5540	.1422	.0159	.0076	0030
.151	2.62	16.01		-1.5296	.1286	.0313	.0147	0175
.150	2.62	18.00		-1.5157	.1235	.0409	.0175	0231
.152	1.00	19.99	.0330	.0228	0294	.0331	.0228	0294
.151	2.03	19.98	.3900	9462	.0594	.0377	.0236	0295
.152	2.58	19.98		-1.4225	.1153	.0327	.0289	0247
.152	3.01	19.99		-1.7909	.1581	.0334	.0274	0210
.145	3.83	19.98		-2.7861	.2645	.0357	.0168	0174
.149	3.83	19.99		-2.6255	.2477	.0363	.0191	0184
.151	1.00	15.98	.0310	.0116	0179	.0311	.0116	0179
.151	1.00	17.98	.0507	.0171	0305	.0508	.0172	0305
.151	1.00	19.98	.0573	.0249	0360	.0574	.0250	0360
.151	1.00	23.98	.0685	.0354	0446	.0687	.0354	0446
.151	1.00	27.98	.0937	.0586	0655	.0939	.0587	0655
.151	1.00	31.99	.1085	.0800	0874	.1087	.0801	0874
.150	1.00	35.18	.1125	.0977	1028	.1127	.0978	1028
.152	2.58	15.97		-1.4334	.1159	.0458	.0385	0229
.152	2.64	17.97		-1.4758	.1162	.0547	.0413	0290
.152	2.63	19.97		-1.4438	.1143	.0551	.0420	0295 0389
.152	2.63	23.97		-1.4010 -1.3410	.1033	.0670	.0496	0542
.152 .152	2.63	27.97 31.97		-1.3410 -1.2771	.0695	.0742	.0777	0342
	2.63	34.98		-1.27/1 -1.2245	.0503	.0913	.0777	0738
.151	2.63	34.70	1.0213	-1.2243	.0003	• 0704	• 0740	0302

Table 2. Continued

(b) Afterbody and nozzle

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.201	.99	.00	0081	.0084	.0077	0017	.0082	0046
1.202	3.01	.02	0079	.0084	.0075	0021	.0074	0034
1.202	4.96	.04	0078	.0084	.0075	0031	.0069	0015
1.203	6.99	.04	0080	.0085	.0075	0035	.0051	0007
1.202	8.97	.03	0078	.0085	.0074	0034	.0036	0008
1.199	.99	-2.02	0163	.0091	.0145	0060	.0086	0008
1.202	.98	.01	0078	.0086	.0073	0013	.0080	0047
1.201	.93	3.01	.0036	.0092	~.0022	.0027	.0086	0061
1.198	.90	5.98	.0174	.0114	0153	.0050	.0098	0048
1.200	.88	9.03	.0301	.0150	0284	.0058	.0121	0010
1.198	.80	12.02	.0405	.0199	0418	.0082	.0172	0037
1.200	.70	16.01	.0534	.0266	0562	.0122	.0213	0071
1.202	.67	18.01	.0594	.0305	0632	.0154	.0237	0106
1.199	7.03	-2.01	0164	.0093	.0144	0022	.0063	0030
1.201	7.00	02	0084	.0087	.0078	0009	.0057	0018
1.201	6.96	3.02	.0036	.0093	0025	.0000	.0056	.0020
1.203	7.02	6.01	.0182	.0116	0163	.0011	.0059	.0051
1.201	7.05	8.98	.0300	.0152	0289	.0037	.0077	.0057
1.199	6.99	11.99	.0408	.0199	0421	.0063	.0105	.0044
1.200	7.00	16.02	.0536	.0269	0569	.0110	.0133	.0007
1.199	6.99	17.98	.0589	.0305	0626	.0138	.0149	0020
.903	1.10	01	0033	.0060	.0028	0075	0027	.0031
.900	1.98	02	0032	.0055	.0027	0056	0020	.0015
.901	3.01	.00	0033	.0055	.0028	0064	0016	.0030
.898	4.99	.02	0034	.0054	.0029	0063	0021	.0035
.900	7.00	.00	0034	.0052	.0028	0067	0032	.0040
.899	1.10	-2.01	0018	.0059	.0010	0069	0026	.0028
.902	1.10	02	0032	.0060	.0026	0059	0027	.0028
.899	1.09	2.99	0049	.0059	.0051	.0005	0030	.0005
.901	1.10	6.01	0060	.0056	.0066	0002	0034	.0009
.901	1.10	8.99	0047	.0058	.0070	.0027	0029	0005
.902	1.10	12.01	0005	.0073	.0051	.0147	.0000	0084
.899	1.09	16.01	.0138	.0142	0055	.0162	.0031	0097
.899	1.07	18.02	.0189	.0188	0093	.0195	.0061	0132
.900	5.01	-1.99	0017	.0053	.0009	0071	0020	.0039
.901	5.00	.00	0032	.0054	.0027	0066	0024	.0039
.901	5.01	3.03	0050	.0053	.0054	0004	0030	.0009
.899	4.99	5.99	0055	.0050	.0063	0021	0034	.0023
.901	5.00	9.00	0043	.0052	.0067	.0015	0031	.0005
.903	5.01	12.01	.0003	.0070	.0044	.0129	0003	0072
.900	4.99	16.02	.0151	.0141	0071	.0156	.0027	0099
.901	5.00	18.01	.0203	.0187	0112	.0198	.0058	0142

Table 2. Continued

(b) Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.601	1.03	.01	0032	.0055	.0029	0079	0018	.0026
.599	1.99	.02	0031	.0052	.0026	0059	0020	.0020
.601	3.00	02	0031	.0052	.0027	0065	0009	.0029
.602	3.52	02	0029	.0052	.0025	0062	0018	.0029
.603	5.01	02	0031	.0051	.0027	0056	0013	.0025
.604	1.03	-1.94	0041	.0056	.0032	0025	0004	.0002
.600	1.03	.00	0028	.0054	.0024	0017	0011	.0007
.602	1.03	3.01	0019	.0054	.0024	0004	0015	.0007
.603	1.03	6.00	0004	.0056	.0014	.0017	0014	.0002
.601	1.03	9.00	.0019	.0061	0007	.0033	0009	0006
.600	1.03	12.02	.0050	.0072	0042	.0050	0003	0017
.600	1.02	16.00	.0148	.0108	0137	.0108	.0019	0045
.598	1.02	18.03	.0197	.0133	0177	.0144	.0043	0064
.599	3.51	-1.85	0035	.0052	.0026	0033	0011	.0024
.600	3.52	.01	0025	.0051	.0022	0025	0013	.0020
.602	3.51	3.00	0016	.0051	.0022	0002	0014	.0010
.599	3.50	5.97	0002	.0053	.0014	.0015	0014	.0007
.598	3.49	8.99	.0021	.0058	0008	.0035	0009	0005
.599	3.49	12.00	.0055	.0069	0046	.0055	0002	0019
.600	3.49	15.99	.0154	.0105	0142	.0118	.0020	0057
.601	3.50	18.00	.0206	.0133	0186	.0150	.0041	0076
.597	1.02	20.01	.0224	.0156	0215	.0190	.0079	0078
.602	2.02	20.01	.0230	.0156	0221	.0182	.0062	0070
.602	3.05	20.01	.0231	.0156	0224	.0183	.0067	0082
.602	3.51	20.00	.0233	.0157	0226	.0183	.0063	0084
.601	5.01	20.02	.0234	.0157	0229	.0181	.0056	0091
.600	1.02	16.63	.0149	.0109	0148	.0119	.0034	0048
.599	1.02	17.99	.0177	.0125	0171	.0145	.0048	0062
.599	1.02	19.98	.0223	.0156	0215	.0174	.0070	0077
.600	1.00	23.97	.0363	.0255	0370	.0210	.0121	0093
.600	.99	27.98	.0510	.0389	0573	.0261	.0196	0141
.598	.96	31.99	.0665	.0566	0835	.0258	.0266	0175
.599	3.53	16.79	.0156	.0109	0156	.0106	.0020	0046
.599	3.46	17.99	.0181	.0123	0176	.0137	.0038	0064
.598	3.49	19.98	.0228	.0155	0221	.0174	.0059	0083
.596	3.48	23.96	.0372	.0256	0382	.0219	.0107	0117
.600	3.50	27.97	.0530	.0398	0603	.0295	.0185	0202
.600	3.50	31.98	.0699	.0586	0886	.0314	.0258	0264

Table 2. Concluded

(b) Concluded

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.152	1.00	.00	0016	.0064	.0006	.0088	.0022	0065
.153	2.02	01	0032	.0071	.0026	.0226	0106	0161
.153	2.60	.00	0032	.0071	.0034	.0134	.0070	0117
.153	3.00	.00	0031	.0076	.0035	.0086	.0047	.0010
.154	3.81	.00	0043	.0077	.0047	.0083	0059	.0012
.151	1.00	-1.53	0020	.0058	.0014	.0082	0091	0026
.151	1.00	01	0016	.0057	.0011	.0113	0040	0030
.152	1.00	2.98	0017	.0058	.0028	.0138	0075	0047
.152	1.00	6.02	0002	.0059	.0017	.0159	0093	0026
.152	1.00	8.98	.0024	.0066	0008	.0224	0071	0056
.152	1.00	11.99	.0070	.0081	0062	.0206	0032	0041
.151	1.00	16.02	.0135	.0107	0127	.0269	0030	0079
.151	1.00	17.99	.0183	.0132	0174	.0288	0028	0087
.153	2.63	-1.54	0021	.0069	.0024	.0032	.0018	.0047
.153	2.65	.04	0025	.0067	.0033	.0001	.0034	.0061
.154	2.62	3.02	.0011	.0070	0004	.0024	.0030	.0037
.154	2.62	6.00	.0008	.0070	.0001	.0026	.0014	.0042
.154	2.63	9.00	.0010	.0074	.0007	.0073	.0015	.0006
.151	2.62	12.00	.0048	.0087	0043	.0110	0011	.0014
.151	2.62	16.01	.0132	.0120	0134	.0180	.0026	0041
.150	2.62	18.00	.0191	.0147	0197	.0219	.0028	0034
.152	1.00	19.99	.0175	.0137	0199	.0156	.0091	0094
.151	2.03	19.98	.0181	.0141	0211	.0195	.0095	0084
.152	2.58	19.98	.0181	.0140	0207	.0146	.0150	0040
.152	3.01	19.99	.0181	.0142	0208	.0153	.0132	0001
.145	3.83	19.98	.0167	.0142	0191	.0190	.0026	.0017
.149	3.83	19.99	.0184	.0147	0210	.0179	.0044	.0026
.151	1.00	15.98	.0103	.0086	0104	.0208	.0030	0075
.151	1.00	17.98	.0165	.0108	0172	.0343	.0064	0133
.151	1.00	19.98	.0206	.0130	0214	.0368	.0120	0146
.151	1.00	23.98	.0272	.0185	0270	.0415	.0169	0177
.151	1.00	27.98	.0392	.0288	0419	.0546	.0299	0236
.151	1.00	31.99	.0522	.0428	0611	.0565	.0373	0262
.150	1.00	35.18	.0575	.0521	0715	.0552	.0457	0312
.152	2.58	15.97	.0102	.0095	0094	.0357	.0289	0135
.152	2.64	17.97	.0175	.0122	0188	.0372	.0290	0101
.152	2.63	19.97	.0209	.0144	0218	.0342	.0277	0077
.152	2.63	23.97	.0271	.0195	0283	.0399	.0301	0106
.152	2.63	27.97	.0390	.0299	0426	.0352	.0319	0116
.152	2.63	31.97	.0522	.0440	0617	.0394	.0337	0141
.151	2.63	34.98	.0620	.0566	0783	.0364	.0382	0179

Table 3. Lateral Aerodynamic Characteristics for A/B Nozzle With 100/100 A/B Sidewalls and $\delta_{v,p}=0^\circ$

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	CY
1.201	.99	.00	.0000	.0002	0007	.0000	.0002	0007
1.202	3.01	.02	.0000	.0003	0011	.0000	.0003	0011
1.202	4.96	.04	.0001	.0003	0012	.0001	.0003	0012
1.203	6.99	.04	.0001	.0003	0014	.0001	.0003	0014
1.202	8.97	.03	.0001	.0003	0015	.0001	.0003	0015
1.199	.99	-2.02	.0001	.0001	0007	.0001	.0001	0007
1.202	.98	.01	.0001	.0003	0008	.0001	.0003	0008
1.201	.93	3.01	.0001	.0004	0013	.0001	.0004	0013
1.198	.90	5.98	.0001	.0004	0015	.0001	.0004	0015
1.200	.88	9.03	.0002	.0005	0019	.0002	.0005	0019
1.198	.80	12.02	.0001	.0003	0018	.0001	.0003	0018
1.200	.70	16.01	.0001	.0003	0015	.0001	.0003	0015
1.202	.67	18.01	.0002	.0003	0013	.0002	.0003	0013
1.199	7.03	-2.01	.0002	.0004	0022	.0002	.0004	0022
1.201	7.00	02	.0002	.0005	0025	.0002	.0005	0025
1.201	6.96	3.02	.0002	.0006	0028	.0002	.0006	0028
1.203	7.02	6.01	.0002	.0007	0030	.0002	.0007	0030
1.201	7.05	8.98	.0003	.0011	0034	.0003	.0011	0034
1.199	6.99	11.99	.0002	.0004	0031	.0002	.0004	0031
1.200	7.00	16.02	.0002	.0001	0022	.0002	.0001	0022
1.199	6.99	17.98	.0002	.0000	0018	.0002	.0000	0018
.903	1.10	01	.0003	.0005	0024	.0003	.0005	0024
.900	1.98	02	.0003	.0006	0028	.0003	.0006	0028
.901	3.01	.00	.0003	.0005	0029	.0003	.0005	0029
.898	4.99	.02	.0003	.0005	0032	.0003	.0005	0032
.900	7.00	.00	.0003	.0005	0036	.0003	.0005	0036
.899	1.10	-2.01	.0002	.0004	0023	.0002	.0004	0023
.902	1.10	02	.0003	.0005	0025	.0003	.0005	0025
.899	1.09	2.99	.0002	.0005	0025	.0002	.0005	0025
.901	1.10	6.01	.0002	.0005	0023	.0002	.0005	0023
.901	1.10	8.99	.0002	.0004	0022	.0002	.0004	0022
.902	1.10	12.01	.0002	.0003	0021	.0002	.0003	0021
.899	1.09	16.01	.0002	.0002	0018	.0002	.0002	0018
.899	1.07	18.02	.0002	.0003	0021	.0002	.0003	0021
.900	5.01	-1.99	.0002	.0004	0029	.0002	.0004	0029
.901	5.00	.00	.0002	.0005	0030	.0002	.0005	0030
.901	5.01	3.03	.0002	.0005	0029	.0002	.0005	0029
.899	4.99	5.99	.0002	.0005	0029	.0002	.0005	0029
.901	5.00	9.00	.0002	.0005	0029	.0002	.0005	0029
.903	5.01	12.01	.0002	.0003	0025	.0002	.0003	0025
.900	4.99	16.02	.0002	.0002	0024	.0002	.0002	0024
.901	5.00	18.01	.0002	.0003	0026	.0002	.0003	0026

Table 3. Continued

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	CY
.601	1.03	.01	.0002	.0002	0015	.0002	.0002	0015
.599	1.99	.02	.0002	.0006	0024	.0002	.0006	0024
.601	3.00	02	.0002	.0003	0026	.0002	.0003	0026
.602	3.52	02	.0002	.0004	0028	.0002	.0004	0028
.603	5.01	02	.0002	.0004	0033	.0002	.0004	0033
.604	1.03	-1.94	.0003	.0005	0029	.0003	.0005	0029
.600	1.03	.00	.0004	.0004	0028	.0004	.0004	0028
.602	1.03	3.01	.0004	.0005	0028	.0004	.0005	0028
.603	1.03	6.00	.0004	.0005	0028	.0004	.0005	0028
.601	1.03	9.00	.0003	.0005	0028	.0003	.0005	0028
.600	1.03	12.02	.0003	.0006	0028	.0003	.0006	0028
.600	1.02	16.00	.0003	.0005	0026	.0003	.0005	0026
.598	1.02	18.03	.0003	.0006	0028	.0003	.0006	0028
.599	3.51	-1.85	.0002	.0004	0032	.0002	.0004	0032
.600	3.52	.01	.0002	.0004	0029	.0002	.0004	0029
.602	3.51	3.00	.0002	.0004	0032	.0002	.0004	0032
.599	3.50	5.97	.0002	.0004	0032	.0002	.0004	0032
.598	3.49	8.99	.0002	.0004	0032	.0002	.0004	0032
.599	3.49	12.00	.0003	.0006	0035	.0003	.0006	0035
.600	3.49	15.99	.0002	.0005	0032	.0002	.0005	0032
.601	3.50	18.00	.0003	.0007	0040	.0003	.0007	0040
.597	1.02	20.01	.0001	.0006	0020	.0001	.0006	0020
.602	2.02	20.01	.0002	.0011	0035	.0002	.0011	0035
.602	3.05	20.01	.0002	.0011	0039	.0002	.0011	0039
.602	3.51	20.00	.0002	.0010	0041	.0002	.0010	0041
.601	5.01	20.02	.0002	.0012	0050	.0002	.0012	0050
.600	1.02	16.63	.0000	.0002	0011	.0000	.0002	0011
.599	1.02	17.99	.0000	.0002	0012	.0000	.0002	0012
.599	1.02	19.98	.0001	.0007	0025	.0001	.0007	0025
.600	1.00	23.97	.0011	.0078	0188	.0011	.0078	0188
.600	.99	27.98	.0018	.0128	0275	.0018	.0128	0275
.598	.96	31.99	.0016	.0127	0266	.0016	.0127	0266
.599	3.53	16.79	.0001	.0004	0021	.0001	.0004	0021
.599	3.46	17.99	.0001	.0005	0025	.0001	.0005	0025
.598	3.49	19.98	.0002	.0012	0045	.0002	.0012	0045
.596	3.48	23.96	.0012	.0082	0206	.0012	.0082	0206
.600	3.50	27.97	.0019	.0133	0298	.0019	.0133	0298
.600	3.50	31.98	.0018	.0141	0304	.0018	.0141	0304

Table 3. Concluded

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	CY
.152	1.00	.00	.0029	.0037	0222	.0029	.0037	0222
.153	2.02	01	.0032	.0093	0376	.0032	.0093	0376
.153	2.60	.00	.0028	.0062	0352	.0028	.0062	0352
.153	3.00	.00	.0020	.0043	0352	.0020	.0043	0352
.154	3.81	.00	.0016	.0030	0365	.0016	.0030	0365
.151	1.00	-1.53	.0020	.0029	0174	.0020	.0029	0174
.151	1.00	01	.0018	.0033	0188	.0018	.0033	0188
.152	1.00	2.98	.0018	.0033	0170	.0018	.0033	0170
.152	1.00	6.02	.0018	.0037	0170	.0018	.0037	0170
.152	1.00	8.98	.0015	.0043	0170	.0015	.0043	0170
.152	1.00	11.99	.0014	.0037	0135	.0014	.0037	0135
.151	1.00	16.02	.0011	.0043	0134	.0011	.0043	0134
.151	1.00	17.99	.0011	.0049	0152	.0011	.0049	0152
.153	2.63	-1.54	.0005	.0029	0228	.0005	.0029	0228
.153	2.65	.04	.0007	.0028	0197	.0007	.0028	0197
.154	2.62	3.02	.0010	.0041	0245	.0010	.0041	0245
.154	2.62	6.00	.0006	.0039	0212	.0006	.0039	0212
.154	2.63	9.00	.0009	.0047	0243	.0009	.0047	0243
.151	2.62	12.00	.0007	.0047	0218	.0007	.0047	0218
.151	2.62	16.01	.0004	.0043	0197	.0004	.0043	0197
.150	2.62	18.00	.0003	.0051	0201	.0003	.0051	0201
.152	1.00	19.99	.0020	.0010	0041	.0020	.0010	0041
.151	2.03	19.98	.0016	.0085	0251	.0016	.0085	0251
.152	2.58	19.98	.0009	.0071	0253	.0009	.0071	0253
.152	3.01	19.99	.0007	.0050	0237	.0007	.0050	0237
.145	3.83	19.98	.0006	.0056	0305	.0006	.0056	0305
.149	3.83	19.99	.0005	.0052	0287	.0005	.0052	0287
.151	1.00	15.98	.0015	.0017	0075	.0015	.0017	0075
.151	1.00	17.98	.0014	.0016	0059	.0014	.0016	0059
.151	1.00	19.98	.0014	.0017	0058	.0014	.0017	0058
.151	1.00	23.98	.0010	.0011	0037	.0010	.0011	0037
.151	1.00	27.98	.0012	.0020	0042	.0012	.0020	0042
.151	1.00	31.99	.0006	0023	.0061	.0006	0023	.0061
.150	1.00	35.18	.0009	0023	.0048	.0009	0023	.0048
.152	2.58	15.97	.0013	.0066	0252	.0013	.0066	0252
.152	2.64	17.97	.0010	.0064	0250	.0010	.0064	0250
.152	2.63	19.97	.0009	.0062	0232	.0009	.0062	0232
.152	2.63	23.97	.0006	.0051	0209	.0006	.0051	0209
.152	2.63	27.97	.0006	.0072	0233	.0006	.0072	0233
.152	2.63	31.97	0005	.0016	0078	0005	.0016	0078
.151	2.63	34.98	0006	.0010	0073	0006	.0010	0073

Table 4. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 50/50 A/B Sidewalls and $\delta_{v,p}=0^\circ$

(a) Total aft end

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.201	.97 3.01	.01	0096 0086	.0173	.0045	0096 0086	.0173	.0045
1.200 1.201 1.201	5.00 7.06 9.03	.02	0104 0108 0111	0452 0774 1084	.0120 .0158 .0189	0104 0109 0112	.0158 .0147 .0134	.0062
.902	1.10	.00	0108 0108	.0033	.0065	0108 0108	.0033	.0071 .0065 .0073
.900 .897	3.00 4.99	.02	0111 0109	0518 1058	.0127	0112 0109	.0033	.0076
.900 .598 .598	7.01 1.03 2.02	.02	0108 0085 0069	1599 .0039 0626	.0231 .0049 .0110	0109 0085 0070	.0028 .0039 .0031	.0075
.600 .600 .602	3.01 3.58 5.09	.01 .02 .02	0068 0067 0061	1197 1542 2454	.0171 .0205 .0292	0068 0067 0062	.0045	.0056 .0056 .0055

(b) Afterbody and nozzle

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.201	.97	.01	0084	.0083	.0082	0012	.0090	0037
1.201	3.01	.02	0081	.0084	.0079	0005	.0078	0044
1.200	5.00	.02	0084	.0085	.0081	0021	.0073	0019
1.201	7.06	.02	0083	.0085	.0080	0026	.0062	0011
1.201	9.03	.02	0083	.0085	.0079	0029	.0049	0008
.902	1.10	.00	0035	.0060	.0032	0073	0028	.0033
.901	2.02	.02	0036	.0055	.0034	0072	0028	.0040
.900	3.00	.02	0037	.0055	.0034	0075	0022	.0042
.897	4.99	.01	0037	.0054	.0034	0072	0021	.0040
.900	7.01	.02	0036	.0052	.0032	0073	0024	.0042
.598	1.03	.01	0032	.0054	.0030	0053	0015	.0019
.598	2.02	.02	0031	.0051	.0030	0039	0020	.0024
.600	3.01	.01	0036	.0051	.0036	0033	0006	.0021
.600	3.58	.02	0031	.0051	.0029	0037	0011	.0027
.602	5.09	.02	0028	.0050	.0027	0034	0024	.0028

Table 5. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 25/25 A/B Sidewalls and $\delta_{v,p}=0^\circ$

(a) Total aft end

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.200	.92	.02	0104	.0184	.0054	0104	.0184	.0054
1.200	3.03	.02	0092	0152	.0063	0093	.0162	.0034
1.202	5.01	.01	0101	0448	.0106	0101	.0161	.0048
1.202	7.00	.02	0102	0760	.0137	0102	.0150	.0050
1.201	8.97	.03	0105	1075	.0174	0106	.0136	.0057
1.200	.95	-2.04	0222	.0196	.0131	0222	.0196	.0131
1.203	.91	.01	0109	.0184	.0052	0109	.0184	.0052
1.204	.90	2.99	.0039	.0186	0048	.0039	.0186	0048
1.200	.88	5.98	.0197	.0218	0176	.0198	.0218	0176
1.201	.85	8.99	.0337	.0294	0302	.0338	.0294	0302
1.204	.81	12.01	.0498	.0375	0469	.0499	.0375	0469
1.200	.74	16.03	.0660	.0487	0643	.0661	.0487	0643
1.200	.70	17.99	.0752	.0550	0745	.0753	.0551	0745
1.200	6.98	-1.99	0210	0742	.0193	0178	.0169	.0105
1.202	7.00	01	0079	0752	.0128	0079	.0159	.0041
1.201	6.99	3.01	.0097	0746	.0065	.0049	.0164	0022
1.201	7.00	6.01	.0291	0717	0035	.0196	.0190	0123
1.199	7.00	9.01	.0491	0664	0159	.0348	.0239	0247
1.199	6.99	11.98	.0670	0576	0315	.0481	.0318	0402
1.203	7.04	15.99	.0919	0460	0514	.0668	.0418	0602
1.200	7.01	18.01	.1035	0392	0607	.0754	.0478	0695
.901	1.09	02	0092	.0042	.0046	0092	.0042	.0046
.903	2.03	01	0089	0261	.0079	0089	.0032	.0054
.898	3.01	02	0077	0513	.0091	0077	.0041	.0040
.903	5.03	.00	0082	1044	.0147	0082	.0040	.0044
.899	7.02	.00	0078	1601	.0197	0079	.0032	.0040
.902	1.10	-2.05	0080	.0038	.0030	0080	.0038	.0030
.901	1.09	01	0079	.0038	.0043	0079	.0038	.0043
.902	1.09	3.02	0031	.0033	.0044	0031	.0033	.0044
.897	1.09	6.02	0053	.0027	.0063	0052	.0027	.0063
.901	1.09	9.03	0027	.0032	.0065	0027	.0032	.0065
.902	1.09	12.01	.0140	.0077	0032	.0141	.0077	0032
.901	1.09	16.00	.0290	.0174	0144	.0291	.0174	0144
.899	1.08	18.01	.0376	.0249	0221	.0378	.0250	0221
.901	5.02	-2.05	0113	1051	.0131	0074	.0037	.0027
.899	5.02	.01	0077	1054	.0146	0077	.0038	.0042
.900	5.02	2.99	.0022	1055	.0144	0035	.0035	.0040
.901	5.02	6.00	.0056	1057	.0170	0058	.0028	.0066
.901	5.02	9.00	.0146	1043	.0162	0024	.0033	.0058
.902	5.02	12.02	.0367	0986	.0061	.0141	.0078	0042
.903	5.03	16.04	.0612	0862	0081	.0313	.0183	0185
.899	5.01	18.01	.0738	0783	0172	.0402	.0255	0277

Table 5. Continued

(a) Continued

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.602	1.03	.03	0102	.0048	.0048	0102	.0048	.0048
.599	1.99	.02	0079	0610	.0097	0079	.0029	.0048
.604	3.00	.02	0070	1177	.0146	0070	.0044	.0033
.597	3.54	.01	0065	1523	.0179	0065	.0047	.0033
.598	4.97	.01	0050	2385	.0249	0050	.0054	.0017
.602	1.03	-1.74	0057	.0049	.0030	0058	.0049	.0030
.599	1.03	.03	0041	.0048	.0028	0041	.0048	.0028
.601	1.03	2.99	0020	.0041	.0030	0020	.0041	.0030
.600	1.03	6.00	.0015	.0046	.0014	.0016	.0047	.0014
.602	1.03	8.99	.0051	.0052	0009	.0052	.0052	0009
.600	1.03	12.00	.0098	.0068	0052	.0099	.0069	0052
.598	1.03	15.99	.0258	.0132	0180	.0259	.0132	0180
.599	1.02	17.98	.0334	.0180	0233	.0336	.0180	0233
.600	3.49	-1.67	0096	1493	.0175	0052	.0039	.0031
.599	3.50	.01	0033	1495	.0167	0033	.0040	.0023
.602	3.50	3.00	.0069	1487	.0162	0010	.0040	.0018
.600	3.50	6.01	.0186	1480	.0146	.0026	.0046	.0002
.599	3.50	9.00	.0308	1461	.0115	.0068	.0056	0029
.599	3.50	12.00	.0440	1425	.0064	.0121	.0077	0080
.598	3.49	16.00	.0703	1343	0074	.0279	.0138	0218
.600	3.50	17.99	.0838	1269	0141	.0366	.0188	0285
.598	1.02	20.02	.0410	.0232	0288	.0412	.0233	0288
.600	1.97	20.01	.0624	0374	0236	.0413	.0211	0289
.599	3.01	19.99	.0843	0944	0205	.0419	.0226	0320
.600	3.55	20.00	.0957	1248	0184	.0422	.0226	0331
.599	4.98	20.00	.1263	2052	0125	.0431	.0237	0358
.600	1.03	16.59	.0268	.0142	0190	.0269	.0142	0190
.601	1.03	17.96	.0318	.0175	0225	.0319	.0175	0225
.600	1.02	19.98	.0397	.0229	0288	.0398	.0229	0288
.601	1.00	23.98	.0569	.0382	0460	.0571	.0383	0460
.598	.98	27.98	.0773	.0596	0728	.0775	.0597	0728
.601 .599	.96	31.96	.0932	.0849	1036	.0934	.0850	1036
	3.49	16.78	.0710	1327	0075	.0269	.0140	0219
.601 .600	3.51	17.99	.0804	1292	0117	.0331	.0169	0261
.598	3.51 3.51	19.99 23.99	.0937	1229	0181	.0412	.0221	0325
.600	3.52	27.99	.1229 .1551	1045	0375	.0601	.0371	0520
.599	3.51	31.98	.1834	0768 0459	0681	.0829	.0594	0826
• 277	٦. ٦٢	21.70	.1034	0439	1029	.1017	.0854	1174

Table 5. Continued

(a) Concluded

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.151	1.00	.02	.0108	.0098	0077	.0108	.0098	0077
.149	2.00	.01		-1.0416	.0749	.0268	0057	0140
.151	2.59	.00		-1.5589	.1185	.0296	.0092	0239
.151	3.00	.01		-1.9362	.1658	.0285	.0101	0142
.150	3.78	.00		-2.7005	.2354	.0320	.0086	0205
.149	1.00	-1.36	.0100	.0003	0031	.0100	.0003	0031
.150	1.00	.00	.0274	0007	0094	.0274	0007	0094
.149	1.00	2.99	.0333	0018	0095	.0333	0018	0095
.151	1.00	5.98	.0363	.0003	0099	.0363	.0003	0099
.151	1.00	9.01	.0347	.0049	0108	.0347	.0049	0108
.150	1.00	12.00	.0343	.0110	0117	.0344	.0110	0117
.148	1.00	15.99	.0516	.0174	0244	.0517	.0174	0244
.151	1.00	17.98	.0550	.0231	0296	.0551	.0231	0296
.150	2.59	-1.39	0127	-1.5848	.1245	.0259	.0036	0196
.150	2.59	02	.0257	-1.5878	.1239	.0262	.0069	0208
.151	2.60	3.02		-1.5731	.1258	.0243	.0078	0179
.151	2.60	5.98		-1.5526	.1249	.0243	.0088	0177
.148	2.60	9.00	.2891	-1.5993	.1254	.0341	.0116	0226
.151	2.60	11.99		-1.5196	.1182	.0354	.0155	0243
.150	2.60	15.99	.4850	-1.5058	.1096	.0471	.0232	0348
.148	2.60	17.98	.5675	-1.5380	.1040	.0588	.0298	0456
.151	1.00	19.99	.0349	.0254	026 9	.0350	.0254	0269
.150	2.01	19.97	.3839	9574	.0770	.0310	.0139	0120
.150	2.60	19.98	.5841	-1.4836	.1187	.0360	.0240	0270
.150	3.01	19.98	.7095	-1.8380	.1607	.0317	.0262	0228
.150	3.84	19.98		-2.5838	.2355	.0359	.0231	0268
.149	1.00	15.98	.0092	.0158	0119	.0093	.0158	0119
.152	1.00	17.97	.0252	.0182	0229	.0253	.0182	0229
.149	1.00	19.98	.0390	.0280	0298	.0392	.0280	0298
.149	1.00	23.99	.0640	.0414	0448	.0642	.0414	0448
.149	1.00	27.98	.0728	.0574	0592	.0730	.0575	0592
.149	1.00	31.98	.0978	.0821	0846	.0980	.0822	0846
.149	1.00	34.98	.1066	.1011	1024	.1068	.1012	1024
.151	2.61	15.98		-1.5053	.1249	.0393	.0293	0202
.151	2.61	17.97		-1.4827	.1140	.0518	.0341	0309
.151	2.61	19.97		-1.4631	.1095	.0558	.0381	0356
.151	2.61	23.97		-1.4181	.1031	.0651	.0431	0422
.150	2.61	27.99		-1.3635	.0862	.0795	.0582	0601
.150	2.61	31.98		-1.2870	.0630	.0988	.0783	0832
.150	2.61	34.97	1.0279	-1.2299	.0453	.1024	.0936	1015

Table 5. Continued

(b) Afterbody and nozzle

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.200	.92	.02	0087	.0083	.0084	0017	.0101	0030
1.200	3.03	.02	0085	.0083	.0082	0007	.0079	0030
1.202	5.01	.01	0084	.0084	.0080	0017	.0077	0032
1.202	7.00	.02	0086	.0084	.0082	0017	.0066	0032
1.201	8.97	.03	0083	.0084	.0079	0023	.0051	0022
1.200	.95	-2.04	0171	.0091	.0153	0051	.0105	0022
1.203	.91	.01	0087	.0085	.0082	0023	.0099	0031
1.204	.90	2.99	.0031	.0090	0017	.0008	.0095	0031
1.200	.88	5.98	.0166	.0112	0144	.0032	.0105	0032
1.201	.85	8.99	.0284	.0148	0272	.0054	.0146	0030
1.204	.81	12.01	.0406	.0196	0418	.0093	.0179	0051
1.200	.74	16.03	.0535	.0266	0560	.0126	.0221	0083
1.200	.70	17.99	.0594	.0305	0629	.0159	.0246	0116
1.200	6.98	-1.99	0170	.0093	.0150	0008	.0076	0045
1.202	7.00	01	0088	.0087	.0081	.0008	.0072	0041
1.201	6.99	3.01	.0031	.0092	0020	.0018	.0072	0003
1.201	7.00	6.01	.0174	.0114	0155	.0022	.0076	.0032
1.199	7.00	9.01	.0303	.0150	0287	.0045	.0089	.0040
1.199	6.99	11.98	.0406	.0198	0419	.0075	.0120	.0016
1.203	7.04	15.99	.0538	.0268	0569	.0130	.0151	0033
1.200	7.01	18.01	.0602	.0309	0640	.0151	.0169	0055
.901	1.09	02	0034	.0060	.0028	0058	0018	.0018
.903	2.03	01	0035	.0055	.0030	0054	0023	.0024
.898	3.01	02	0035	.0055	.0029	0042	0014	.0010
.903	5.03	.00	0033	.0054	.0027	0049	0014	.0017
.899	7.02	.00	0034	.0052	.0028	0045	0021	.0012
. 902	1.10	-2.05	0017	.0059	.0010	0063	0021	.0020
.901	1.09	01	0032	.0059	.0026	0047	0022	.0017
.902	1.09	3.02	0050	.0059	.0052	.0019	0025	0009
.897	1.09	6.02	0054	.0056	.0061	.0002	0030	.0003
.901	1.09	9.03	0049	.0058	.0070	.0022	0026	0004
.902	1.09	12.01	0005	.0072	.0053	.0146	.0005	0085
.901	1.09	16.00	.0130	.0139	0044	.0161	.0034	0100
.899	1.08	18.01	.0184	.0184	0089	.0194	.0065	0132
.901	5.02	-2.05	0017	.0053	.0009	0058	0016	.0018
.899	5.02	.01	0033	.0054	.0027	0045	0016	.0015
.900	5.02	2.99	0047	.0053	.0051	.0012	0019	0011
.901	5.02	6.00	0056	.0050	.0063	0002	0023	.0003
.901	5.02	9.00	0045	.0052	.0067	.0021	0019	0009
.902	5.02	12.02	0003	.0067	.0048	.0144	.0012	0090
.903	5.03	16.04	.0145	.0139	0062	.0168	.0043	0123
.899	5.01	18.01	.0203	.0184	0119	.0200	.0071	0157

Table 5. Continued

(b) Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.602	1.03	.03	0038	.0055	.0034	0064	0007	.0014
.599	1.99	.02	0036	.0051	.0032	0043	0022	.0010
.604	3.00	.02	0033	.0051	.0028	0037	0007	.0005
.597	3.54	.01	0033	.0052	.0029	0032	0005	.0002
.598	4.97	.01	0033	.0051	.0030	0017	.0003	0013
.602	1.03	-1.74	0036	.0056	.0027	0021	0006	.0002
.599	1.03	.03	0031	.0055	.0027	0011	0007	.0000
.601	1.03	2.99	0020	.0054	.0025	.0000	0013	.0005
.600	1.03	6.00	0005	.0056	.0016	.0021	0010	0002
.602	1.03	8.99	.0017	.0061	0004	.0035	0009	0005
.600	1.03	12.00	.0044	.0070	0034	.0055	0001	0018
.598	1.03	15.99	.0142	.0105	0129	.0117	.0027	0051
.599	1.02	17.98	.0190	.0130	0169	.0146	.0050	0065
.600	3.49	-1.67	0036	.0051	.0028	0016	0013	.0003
.599	3.50	.01	0030	.0051	.0027	0003	0011	0004
.602	3.50	3.00	0018	.0051	.0024	.0008	0011	0006
.600	3.50	6.01	0003	.0053	.0014	.0028	0007	0012
.599	3.50	9.00	.0020	.0058	0007	.0048	0002	0022
.599	3.50	12.00	.0049	.0067	0039	.0072	.0009	0040
.598	3.49	16.00	.0150	.0104	0138	.0130	.0033	0081
.600	3.50	17.99	.0199	.0130	0179	.0167	.0058	0106
.598	1.02	20.02	.0223	.0156	0213	.0188	.0077	0075
.600	1.97	20.01	.0227	.0155	0217	.0185	.0056	0071
.599	3.01	19.99	.0229	.0156	0220	.0190	.0070	0100
.600	3.55	20.00	.0232	.0157	0226	.0190	.0069	0105
.599	4.98	20.00	.0239	.0160	0236	.0192	.0077	0122
.600	1.03	16.59	.0146	.0109	0145	.0123	.0033	0045
.601	1.03	17.96	.0175	.0126	0168	.0144	.0049	0057
.600	1.02	19.98	.0223	.0156	0214	.0176	.0073	0074
.601	1.00	23.98	.0361	.0255	0367	.0210	.0128	0093
.598	.98	27.98	.0515	.0392	0580	.0260	.0205	0149
.601	.96	31.96	.0669	.0568	0841	.0265	.0281	0195
.599	3.49	16.78	.0157	.0110	0158	.0112	.0029	0061
.601	3.51	17.99	.0183	.0125	0178	.0148	.0044	0083
.600	3.51	19.99	.0231	.0157	0224	.0181	.0064	0101
.598	3.51	23.99	.0372	.0257	0383	.0229	.0114	0137
.600	3.52	27.99	.0531	.0400	0604	.0298	.0194	0221
.599	3.51	31.98	.0696	.0585	0881	.0321	.0269	0293

Table 5. Concluded

(b) Concluded

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.151	1.00	.02	0004	.0059	0010	.0111	.0038	0067
.149	2.00	.01	0009	.0068	.0003	.0277	0125	0143
.151	2.59	.00	0006	.0068	.0006	.0302	.0023	0244
.151	3.00	.01	0007	.0068	.0009	.0293	.0033	0151
.150	3.78	.00	0005	.0070	.0009	.0325	.0017	0214
.149	1.00	-1.36	0006	.0049	.0007	.0106	0046	0038
.150	1.00	.00	0004	.0047	0004	.0278	0054	0091
.149	1.00	2.99	0005	.0046	.0013	.0338	0064	0108
.151	1.00	5.98	.0004	.0048	.0016	.0360	0045	0115
.151	1.00	9.01	.0050	.0055	0031	.0298	0006	0077
.150	1.00	12.00	.0089	.0073	0075	.0255	.0037	0042
.148	1.00	15.99	.0136	.0095	0123	.0381	.0078	0121
. 151	1.00	17.98	.0193	.0121	0178	.0359	.0110	0118
.150	2.59	-1.39	0030	.0063	.0038	.0289	0027	0234
.150	2.59	02	0020	.0062	.0030	.0283	.0007	0238
.151	2.60	3.02	0017	.0062	.0031	.0259	.0016	0211
.151	2.60	5.98	.0007	.0064	.0012	.0236	.0024	0188
.148	2.60	9.00	.0028	.0069	0008	.0313	.0047	0219
.151	2.60	11.99	.0038	.0076	0014	.0316	.0079	0228
.150	2.60	15.99	.0106	.0103	0091	.0365	.0129	0256
.148	2.60	17.98	.0160	.0128	0146	.0428	.0169	0310
.151	1.00	19.99	.0196	.0144	0219	.0154	.0109	0049
.150	2.01	19.97	.0176	.0144	0202	.0134	0005	.0082
.150	2.60	19.98	.0188	.0148	0216	.0172	.0092	0053
.150	3.01	19.98	.0185	.0149	0215	.0132	.0114	0013
.150	3.84	19.98	.0190	.0156	0225	.0169	.0076	0043
.149	1.00	15.98	.0119	.0109	0152	0027	.0049	.0033
.152	1.00	17.97	.0160	.0124	0188	.0092	.0059	0041
.149	1.00	19.98	.0191	.0142	0208	.0200	.0138	0090
.149	1.00	23.99	.0285	.0207	0300	.0357	.0207	0148
.149	1.00	27.98	.0392	.0303	0432	.0337	.0272	0160
.149	1.00	31.98	.0527	.0441	0627	.0453	.0380	0219
.149	1.00	34.98	.0590	.0534	0742	.0479	.0477	0283
.151	2.61	15.98	.0111	.0104	0111	.0281	.0189	0090
.151	2.61	17.97	.0169	.0124	0182	.0350	.0217	0127
.151	2.61	19.97	.0212	.0149	0222 0287	.0346	.0232	0134
.151 .150	2.61 2.61	23.97 27.99	.0281 .0383	.0205	0287 0407	.0371	.0226	0135 0194
.150	2.61	31.98	.0518	.0300	0407	.0412	.0282	0194
.150	2.61	34.97	.0575	.0533	0010	.0470	.0342	0222
. 130	2.01	34.7/	.0272	•0233	0/14	.0449	.0403	0301

Table 6. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100 Dry Sidewalls and $\delta_{v,p}=0^\circ$

(a) Total aft end

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.202	.97	.00	0091	.0168	.0039	0091	.0168	.0039
1.201	3.01	.01	0094	0151	.0069	0095	.0161	.0038
1.200	4.94	.02	0113	0445	.0122	0113	.0158	.0063
1.200	7.01	.03	0121	0774	.0164	0122	.0137	.0075
1.201	9.04	.02	0116	1089	.0192	0117	.0123	.0073
.904	1.10	02	0106	.0033	.0063	0106	.0033	.0063
.896	2.01	.02	0095	0263	.0086	0095	.0031	.0057
.897	3.00	.02	0102	0520	.0124	0102	.0039	.0069
.900	5.00	.01	0099	1056	.0175	0099	.0030	.0068
.902	7.01	.02	0099	1596	.0228	0099	.0014	.0071
.601	1.03	03	0056	.0038	.0041	0056	.0038	.0041
.600	1.99	.01	0038	0605	.0091	0039	.0037	.0027
.600	3.03	.01	0046	1211	.0163	0046	.0050	.0038
.601	3.50	.01	0045	1496	.0190	0045	.0048	.0038
.599	4.99	.00	0037	2406	.0275	0037	.0041	.0036
.601	1.03	-1.81	0051	.0042	.0036	0052	.0042	.0036
.600	1.03	2.02	0017	.0038	.0032	0017	.0038	.0032
.599	1.03	01	0038	.0037	.0036	0038	.0037	.0036
.598	1.03	6.00	.0010	.0039	.0022	.0010	.0039	.0022
.601	1.03	8.97	.0054	.0049	0009	.0055	.0049	0009
.602	1.03	11.98	.0109	.0067	0060	.0110	.0067	0060

Table 6. Concluded

(b) Afterbody and nozzle

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.202	.97	.00	0084	.0084	.0081	0007	.0085	0042
1.201	3.01	.01	0083	.0084	.0080	0011	.0077	0042
1.200	4.94	.02	0084	.0085	.0080	0029	.0074	0017
1.200	7.01	.03	0085	.0085	.0080	0037	.0052	0005
1.201	9.04	.02	0084	.0085	.0080	0033	.0038	0006
.904	1.10	02	0036	.0060	.0032	0071	0027	.0031
.896	2.01	.02	0038	.0054	.0035	0056	0023	.0022
.897	3.00	.02	0038	.0055	.0034	0064	0016	.0035
.900	5.00	.01	0037	.0054	.0033	0062	0023	.0035
.902	7.01	.02	0036	.0051	.0032	0064	0037	.0039
.601	1.03	03	0033	.0053	.0031	0023	0015	.0010
.600	1.99	.01	0031	.0050	.0028	0008	0012	0002
.600	3.03	.01	0031	.0050	.0030	0015	.0000	.0008
.601	3.50	.01	0031	.0050	.0029	0015	0002	.0009
.599	4.99	.00	0025	.0050	.0022	0012	0009	.0013
.601	1.03	-1.81	0035	.0053	.0028	0016	0011	.0009
.600	1.03	2.02	0023	.0052	.0027	.0006	0014	.0005
.599	1.03	01	0031	.0052	.0029	0007	0015	.0007
.598	1.03	6.00	0003	.0054	.0015	.0013	0016	.0007
.601	1.03	8.97	.0019	.0059	0005	.0036	0010	0004
.602	1.03	11.98	.0048	.0068	0038	.0062	0001	0022

Table 7. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/100 A/B Sidewalls and $\delta_{v,p}=15^\circ$

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.205	.93	.03	0065	.0161	.0007	0065	.0161	.0007
1.199	3.00	.02	.0086	0121	0245	0009	.0163	0101
1.197	5.00	.00	.0214	0404	0439	.0045	.0164	0195
1.197	6.98	03	.0312	0693	0583	.0071	.0158	0239
1.202	8.91	01	.0385	0970	0682	.0074	.0146	0244
1.197	.96	-2.01	0187	.0173	.0083	0187	.0173	.0083
1.195	.91	03	0080	.0169	.0012	0080	.0169	.0012
1.200	.89	3.03	.0081	.0190	0116	.0081	.0190	0116
1.198	.85	5.99	.0260	.0242	0288	.0260	.0242	0288
1.197	.80	9.02	.0397	.0317	0423	.0397	.0317	0423
1.201	.73	12.00	.0575	.0417	0635	.0576	.0417	0635
1.199	.66	16.00	.0740	.0537	0844	.0741	.0537	0844
1.202	.62	17.99	.0851	.0609	0979	.0853	.0610	0979
1.200	7.01	-1.98	.0202	0700	0533	0010	.0158	0189
1.202	7.04	.03	.0333	0694	0593	.0090	.0158	0249
1.200	6.98	2.99	.0506	0656	0668	.0222	.0176	0326
1.200	6.99	8.99	.0853	0517	0885	.0484	.0282	0542
1.199	7.06	11.98	.1024	0435	1023	.0608	.0355	0676
.900	1.06	02	.0021	.0049	0133	.0021	.0049	0133
.900	2.00	.01	.0185	0208	0390	.0089	.0050	0242
.900	3.01	01	.0275	0448	0532	.0107	.0057	0276
.899	5.01	03	.0448	0953	0788	.0149	.0057	0354
.899	6.98	04	.0600	1452	1000	.0173	.0056	0389
.901	1.07	-2.01	.0024	.0045	0142	.0024	.0045	0142
.901	1.06	.00	.0035	.0050	0140	.0035	.0050	0140
.899	1.06	3.02	.0073	.0052	0142	.0073	.0052	0142
.899	1.06	6.03	.0053	.0055	0131	.0054	.0055	0131
.899	1.06	9.02	.0104	.0073	0175	.0104	.0073	0175
.903	1.06	12.00	.0262	.0128	0278	.0263	.0128	0278
.898	1.03	16.01	.0437	.0251	0437	.0439	.0251	0437
.902	1.01	18.00	.0504	.0328	0487	.0505	.0328	0487
.902	5.02	-2.02	.0399	0961	0788	.0136	.0053	0356
.898	4.99	.00	.0446	0950	0786	.0148	.0057	0353
.902	5.01	3.00	.0542	0920	0795	.0193	.0067	0364
.899	4.99	6.00	.0575	0892	0785	.0174	.0077	0352
.898	4.98	8.98	.0701	0845	0831	.0249	.0103	0397
.900	5.01	12.00	.0880	0761	0928	.0379	.0163	0494
.902	5.02	16.00	.1153	0581	1109	.0589	.0304	0676
.896	4.99	17.97	.1250	0498	1199	.0654	.0372	0763

Table 7. Continued

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.600	1.02	.02	.0063	.0059	0195	.0063	.0059	0195
.602	1.99	.01	.0395	0506	0684	.0183	.0066	0354
.601	2.99	04	.0567	1054	0928	.0193	.0069	0360
.601	3.52	05	.0659	1353	1061	.0208	.0068	0385
.600	5.02	05	.0905	2203	1419	.0233	.0071	0442
.597	1.04	-2.12	.0066	.0049	0200	.0066	.0049	0200
.600	1.02	03	.0101	.0055	0211	.0101	.0055	0211
.601	1.02	3.01	.0140	.0067	0228	.0140	.0067	0228
.602	1.01	6.02	.0186	.0090	0262	.0186	.0090	0262
.600	1.01	8.97	.0224	.0114	0301	.0225	.0114	0301
.602	1.01	12.01	.0283	.0147	0362	.0284	.0147	0362
.601	1.00	16.02	.0439	.0230	0499	.0440	.0230	0499
.599	.99	17.98	.0521	.0287	0563	.0522	.0287	0563
.602	3.54	-2.04	.0613	1383	1059	.0209	.0061	0381
.601	3.50	.02	.0678	1339	1065	.0228	.0069	0394
.602	3.50	3.02	.0786	1289	1087	.0266	.0086	0419
.602	3.50	5.98	.0899	1235	1125	.0308	.0111	0457
.602	3.49	8.99	.1017	1171	1173	.0357	.0140	0506
.601	3.49	12.00	.1136	1098	1236	.0407	.0180	0567
.602	3.49	16.01	.1391	0946	1393	.0577	.0275	0725
.601	.99	18.01	.0477	.0268	0549	.0478	.0268	0549
.599	.98	20.01	.0567	.0336	0615	.0568	.0336	0615
.599	2.02	19.97	.1082	0110	1160	.0673	.0374	0818
.599	3.00	19.98	.1425	0565	1403	.0681	.0376	0828
.598	3.54	19.99	.1617	0821	1546	.0694	.0378	0861
.599	5.03	19.97	.2143	1521	1915	.0727	.0395	0933
.599	3.48	18.01	.1531	0860	1478	.0668	.0341	0805
.601	1.00	16.49	.0423	.0229	0507	.0424	.0229	0507
.601	.98	19.98	.0560	.0333	0620	.0561	.0333	0620
.598	.97	23.97	.0722	.0498	0795	.0724	.0499	0795
.600	.95	27.99	.0904	.0700	1014	.0906	.0700	1014
.600	.93	31.98	.1055	.0958	1316	.1058	.0959	1316
.598	3.53	16.10	.1376	1006	1413	.0535	.0255	0727
.602	3.54	17.98	.1494	0900	1470	.0624	.0317	0793
.600	3.54	19.98	.1615	0809	1544	.0699	.0382	0864
.599	3.53	23.96	.1897	0562	1764	.0896	.0566	1081
.600	3.54	27.98	.2113	0295	1961	.1038	.0759	1280
.599	3.54	31.97	.2362	.0072	2330	.1213	.1052	1646

Table 7. Concluded

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.152	1.00	02	0225	0116	0065	0225	0116	0065
.153	2.01	03	.3415	9091	5587	.0078	0074	0388
.150	2.60	02	.5170	-1.4535	8291	.0075	.0060	0399
.150	2.98	02	.5951	-1.7745	9299	0011	.0150	0229
.149	1.00	-1.90	.0272	0023	0255	.0272	0023	0255
.152	1.00	.01	.0167	0029	0205	.0167	0029	0205
.152	1.00	3.00	.0225	0019	0219	.0225	0019	0219
.153	1.00	6.03	.0201	0016	0219	.0201	0016	0219
.152	1.00	8.99	.0289	.0039	0279	.0289	.0039	0279
.152	1.00	11.99	.0315	.0106	0316	.0316	.0107	0316
.152	1.00	16.02	.0407	.0166	0451	.0408	.0166	0451
.151	1.00	17.93	.0406	.0201	0495	.0407	.0201	0495
.154	2.59	-2.03	.4535	-1.3913	7918	.0182	.0094	0418
.153	2.60	01	.5103	-1.3795	7968	.0244	.0098	0447
.152	2.60	2.98	.5946	-1.3851	8158	.0234	.0106	0454
.152	2.60	5.98	.6703	-1.3490	8186	.0269	.0143	0484
.152	2.60	9.03	.7468	-1.3106	8232	.0316	.0174	0527
.151	2.60	11.95	.8229	-1.2705	8336	.0379	.0244	0600
.151	2.60	15.92	.9291	-1.2101	8516	.0526	.0325	0747
.151	2.60	17.55	.9714	-1.1832	8622	.0561	.0392	0821
.155	1.00	20.01	.0528	.0283	0520	.0530	.0283	0520
.151	2.02	19.97	.7021	7146	6093	.0619	.0405	0743
.152	2.61	19.96		-1.1245	8559	.0632	.0525	0813
.152	2.99	19.98		-1.4097	9647	.0610	.0456	0730
.152	3.83	19.96		-2.0324	-1.2419	.0638	.0415	0922
.152	1.00	15.98	.0259	.0236	0428	.0260	.0237	0428
.152	1.00	17.98	.0435		0553	.0436	.0325	0553
.152	1.00	19.98	.0560		0630	.0561	.0412	0630
.152	1.00	23.98	.0711		0738	.0713	.0564	0738
.150	1.00	27.99	.0942		0964	.0944	.0799	0964
.149	1.00	31.98	.1157		1212	.1160	.1086	1212
.149	1.00	35.18	.1164		1340	.1166	.1232	1340
.151	2.62	15.97	.9573		8685	.0657	.0640	0816
.151	2.60	17.99	.9989		8727	.0744	.0684	0929
.150	2.59	19.96	1.0530		8830	.0860	.0762	1011
.151	2.59	23.97	1.1293		8827	.0840	.0831	1027
.150	2.59	27.97	1.2273		9049	.1027	.0995	1220
.150	2.59	31.97	1.3133		9325	.1069	.1169	1419
.150	2.59	34.98	1.3705	7700	9499	.1160	.1328	1598

Table 8. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 50/50 A/B Sidewalls and $\delta_{v,p}=15^\circ$

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.199	.91	.02	0076	.0181	.0030	0076	.0181	.0030
1.200	3.02	02	.0084	0110	0227	0010	.0177	0087
1.200	4.97	02	.0217	0379	0433	.0052	.0181	0194
1.194	6.96	02	.0331	0673	0599	.0090	.0175	0254
1.200	9.02	03	.0411	0963	0708	.0098	.0165	0263
.899	1.06	03	0003	.0059	0099	0003	.0059	0099
.904	2.04	.01	.0135	0215	0311	.0050	.0054	0186
.901	2.99	02	.0250	0438	0488	.0086	.0061	0243
.899	5.04	04	.0451	0945	0782	.0153	.0068	0350
.901	7.02	04	.0604	1437	1002	.0178	.0068	0392
.601	1.02	.03	.0079	.0067	0180	.0079	.0067	0180
.601	2.00	03	.0344	0520	0573	.0159	.0067	0305
.601	3.04	03	.0564	1075	0904	.0187	.0077	0343
.601	3.52	03	.0655	1338	1032	.0207	.0081	0373
.601	5.05	03	.0919	2186	1418	.0250	.0089	0449

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.199	.91	.02	0080	.0086	.0078	.0004	.0094	0047
1.200	3.02	02	0067	.0087	.0064	.0057	.0089	0152
1.200	4.97	02	0055	.0087	.0053	.0107	.0094	0246
1.194	6.96	02	0044	.0087	.0041	.0134	.0088	0240
1.200	9.02	03	0035	.0086	.0030	.0133	.0079	0293
.899	1.06	03	0011	.0056	0007	.0008	.0003	0092
.904	2.04	.01	.0006	.0050	0032	.0044	.0004	0154
.901	2.99	02	.0014	.0049	0044	.0072	.0011	0199
.899	5.04	04	.0030	.0048	0066	.0123	.0020	0284
.901	7.02	04	.0040	.0046	0081	.0138	.0020	0311
.601	1.02	.03	.0015	.0051	0040	.0064	.0016	0140
.601	2.00	03	.0039	.0048	0073	.0120	.0020	0232
.601	3.04	03	.0049	.0048	0087	.0138	.0029	0256
.601	3.52	03	.0055	.0048	0096	.0150	.0023	0236
.601	5.05	03	.0071	.0048	0117	.0179	.0040	0332

Table 9. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 25/25 A/B Sidewalls and $\delta_{v,p}=15^\circ$

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.200	.91	.00	0060	.0168	.0003	0060	.0168	.0003
1.200	3.02	.00	.0079	0119	0217	0010	.0168	0089
1.201	5.04	02	.0219	0396	0439	.0055	.0174	0201
1.201	7.04	04	.0334	0681	0615	.0096	.0170	0269
1.200	9.01	03	.0420	0971	0735	.0107	.0157	0282
1.199	.93	-2.02	0178	.0174	.0083	0178	.0174	.0083
1.202	.90	03	0070	.0171	.0007	0070	.0171	.0007
1.200	.88	3.01	.0091	.0195	0116	.0092	.0195	0116
1.198	.86	6.00	.0275	.0240	0276	.0276	.0240	0276
1.201	.80	9.02	.0412	.0317	0401	.0413	.0317	0401
1.203	.74	12.02	.0589	.0413	0610	.0590	.0413	0610
1.200	.64	16.01	.0780	.0543	0834	.0781	.0543	0834
1.203	.61	18.00	.0894	.0621	0976	.0895	.0622	0976
1.200	7.02	-2.02	.0208	0684	0561	0001	.0173	0216
1.198	7.00	.00	.0337	0674	0620	.0099	.0174	0275
1.199	7.01	3.02	.0519	0646	0695	.0237	.0188	0349
1.200	7.02	6.00	.0727	0591	0817	.0401	.0229	0471
1.199	7.02	8.98	.0888	0501	0921	.0520	.0301	0575
1.199	7.02	11.99	.1070	0403	1073	.0660	.0379	0727
.901	1.07	02	.0018	.0051	0090	.0018	.0051	0090
.898	2.03	02	.0120	0230	0243	.0039	.0044	0129
.901	3.00	03	.0256	0447	0462	.0100	.0057	0238
.901	5.01	03	.0463	0936	0782	.0174	.0070	0362
.900	7.04	04	.0639	1444	1040	.0214	.0071	0424
.899	1.07	-2.01	.0009	.0048	0096	.0008	.0048	0096
.902	1.07	.02	.0003	.0051	0086	.0003	.0051	0086
.899	1.06	3.01	.0062	.0052	0103	.0062	.0052	0103
.902	1.06	6.00	.0040	.0051	0081	.0040	.0051	0081
.903	1.07	8.99	.0098	.0069	0136	.0099	.0069	0136
.900	1.06	12.02	.0258	.0127	0240	.0259	.0127	0240
.899	1.03	16.03	.0436	.0254	0393	.0437	.0254	0393
.898	1.01	18.00	.0521	.0332	0463	.0522	.0333	0463
.901	5.03	-2.04	.0406	0958	0784	.0151	.0061	0363
.900	5.01	.01	.0449	0941	0778	.0159	.0066	0358
.900	5.00	2.97	.0546	0913	0790	.0204	.0075	0371
.900	5.00	5.99	.0569	0888	0768	.0177	.0081	0349
.898	4.99	8.99	.0701	0840	0818	.0257	.0109	0398
.898	4.99	11.99	.0891	0752	0927	.0399	.0172	0507
.898	4.99	15.98	.1179	0572	1126	.0623	.0316	0706
.899	5.00	18.00	.1284	0472	1210	.0699	.0395	0790

Table 9. Continued

(a) Continued

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.600	1.02	.01	.0067	.0057	0167	.0067	.0057	0167
.601	1.99	04	.0273	0544	0448	.0101	.0045	0209
.600	3.00	03	.0528	1076	0838	.0176	.0067	0329
.600	3.50	04	.0623	1344	0982	.0198	.0065	0366
.601	5.01	04	.0911	2165	1409	.0263	.0088	0469
.600	1.03	-2.02	.0060	.0053	0163	.0060	.0053	0163
.598	1.02	02	.0097	.0056	0177	.0097	.0056	0177
.600	1.02	2.99	.0121	.0067	0185	.0121	.0067	0185
.600	1.02	5.99	.0165	.0085	0218	.0166	.0085	0218
.603	1.01	9.02	.0215	.0109	0261	.0216	.0109	0261
.600	1.01	12.00	.0266	.0137	0315	.0267	.0137	0315
.599	1.00	15.99	.0420	.0221	0447	.0421	.0221	0447
.601	.99	18.01	.0502	.0280	0512	.0503	.0280	0512
.598	3.49	-2.04	.0572	1366	0976	.0194	.0064	0357
.600	3.52	02	.0644	1351	0994	.0215	.0075	0374
.603	3.52	3.00	.0748	1302	1010	.0249	.0088	0395
.601	3.51	6.01	.0862	1257	1047	.0290	.0108	0431
.601	3.51	8.98	.0981	1200	1096	.0339	.0134	0479
.600	3.51	12.00	.1105	1126	1160	.0392	.0174	0542
.600	3.51	15.99	.1371	0978	1326	.0570	.0268	0708
.597	3.50	17.96	.1514	0896	1413	.0665	.0328	0790
.601	.98	20.00	.0543	.0326	0557	.0544	.0326	0557
.599	2.03	19.97	.0989	0179	0960	.0611	.0334	0707
.600	3.01	19.95	.1370	0596	1293	.0648	.0361	0783
.600	3.51	19.96	.1565	0820	1456	.0676	.0374	0836
.599	5.00	19.95	.2120	1488	1902	.0734	.0420	0956
.600	1.00	16.52	.0392	.0219	0452	.0394	.0219	0452
.599	.99	17.97	.0446	.0256	0492	.0448	.0256	0492
.597	.98	19.96	.0519	.0317	0555	.0520	.0317	0555
.600	.97	23.97	.0701	.0487	0752	.0702	.0487	0752
.601	.95	27.96	.0885	.0691	0995	.0887	.0692	0995
.600	.92	31.96	.1065	.0964	1343	.1067	.0965	1343
.598	3.49	16.15	.1312	0999	1310	.0506	.0244	0690
.601	3.50	17.95	.1431	0903	1373	.0595	.0303	0759
.598	3.49	19.97	.1557	0817	1453	.0674	.0366	0835
.600	3.49	23.98	.1834	0564	1683	.0875	.0550	1068
.600	3.49	27.95	.2075	0282	1926	.1040	.0763	1310
.601	3.50	31.97	.2333	.0098	2326	.1231	.1066	1712

Table 9. Continued

(a) Concluded

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.150	1.00	.01	.0381	.0067	0327	.0381	.0067	0327
.151	2.01	03	.3226	9357	4342	.0426	.0145	0446
.151	2.60	03	.5032	-1.4329	7190	.0416	.0297	0520
.151	3.04	01	.5978	-1.8054	8609	.0340	.0265	0462
.150	3.76	.00	.7907	-2.4841	-1.1401	.0446	.0188	0615
.152	1.00	-1.59	.0037	.0039	0187	.0037	.0039	0187
.150	1.00	01	.0069	.0021	0176	.0069	.0021	0176
.151	1.00	3.00	.0094	.0036	0196	.0095	.0036	0196
.150	1.00	6.00	.0100	.0022	0192	.0100	.0022	0192
.151	1.00	8.99	.0265	.0204	0290	.0265	.0204	0290
.151	1.00	11.99	.0318	.0253	0333	.0319	.0253	0333
.150	1.00	16.01	.0454	.0338	0459	.0455	.0339	0459
.151	1.00	18.00	.0570	.0415	0570	.0572	.0415	0570
.150	2.61	-1.96	.4407	-1.4704	7199	.0228	.0292	0434
.150	2.62	03	.4888	-1.4546	7189	.0211	.0289	0433
.151	2.62	3.00	.5685	-1.4201	7168	.0260	.0290	0446
.150	2.61	5.99	.6488	-1.3950	7221	.0289	.0294	0472
.150	2.61	8.99	.7235	-1.3563	7258	.0292	.0349	0503
.150	2.62	12.00		-1.3211	7373	.0415	.0387	0585
.149	2.61	15.98		-1.2663	7595	.0519	.0490	0741
.149	2.61	17.86		-1.2313	7691	.0601	.0568	0827
.149	1.00	20.02	.0456	.0299	0483	.0457	.0300	0483
.149	2.01	19.99	.6358	7864	4466	.0359	.0270	0494
.152	2.63	19.97		-1.1737	7178	.0313	.0358	0562
.153	3.01	19.96		-1.4304	8519	.0418	.0385	0680
.148	3.80	19.96		-2.1388	-1.2027	.0456	.0459	0818
.149	1.00	15.98	.0164	.0196	0349	.0165	.0197	0349
.152	1.00	17.96	.0288	.0227	0458	.0289	.0227	0458
.149	1.00	19.97	.0395	.0303	0512	.0397	.0304	0512
.150	1.00	23.98	.0627	.0452	0664	.0629	.0453	0664
.147	1.00	27.97	.0822	.0643	0871	.0824	.0644	0871
.148	1.00	31.96	.1044	.0921	1149	.1046	.0922	1149
.151	1.00	34.98	.1124	.1085	1321	.1126	.1086	1321
.149	2.59	15.97		-1.2614	7492	.0367	.0444	0675
.149	2.59	17.97		-1.2232	7563	.0424	.0474	0768
.148	2.59	19.97		-1.1961	7635	.0459	.0507	0791
.151	2.59	23.97		-1.0811	7481	.0548	.0570	0866
.151	2.59	27.98	1.1614	9947	7687	.0746	.0722	1060
.151	2.59	31.97	1.2535	8971	7965	.0921	.0943	1320
.150	2.59	34.96	1.3192	8259	8207	.0989	.1101	1515

Table 9. Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.200	.91	.00	0083	.0084	.0081	.0024	.0084	0078
1.200	3.02	.00	0071	.0085	.0068	.0061	.0083	0157
1.201	5.04	02	0060	.0085	.0057	.0115	.0088	0258
1.201	7.04	04	0048	.0085	.0045	.0144	.0085	0314
1.200	9.01	03	0037	.0084	.0032	.0144	.0073	0314
1.199	.93	-2.02	0166	.0092	.0149	0012	.0082	0067
1.202	.90	03	0081	.0086	.0077	.0011	.0085	0070
1.200	.88	3.01	.0046	.0092	0031	.0046	.0103	0085
1.198	.86	6.00	.0191	.0115	0167	.0085	.0125	0109
1.201	.80	9.02	.0303	.0154	0298	.0110	.0163	0104
1.203	.74	12.02	.0421	.0201	0435	.0169	.0212	0175
1.200	.64	16.01	.0546	.0269	0572	.0236	.0274	0262
1.203	.61	18.00	.0617	.0312	0660	.0277	.0310	0316
1.200	7.02	-2.02	0130	.0091	.0113	.0130	.0082	0329
1.198	7.00	.00	0044	.0087	.0040	.0143	.0087	0315
1.199	7.01	3.02	.0081	.0095	0067	.0156	.0093	0282
1.200	7.02	6.00	.0222	.0119	0201	.0179	.0109	0269
1.199	7.02	8.98	.0324	.0160	0321	.0196	.0141	0254
1.199	7.02	11.99	.0434	.0206	0446	.0227	.0173	0280
.901	1.07	02	0013	.0055	0004	.0031	0004	0086
.898	2.03	02	0001	.0050	0021	.0040	0006	0108
.901	3.00	03	.0013	.0049	0043	.0087	.0008	0195
.901	5.01	03	.0030	.0047	0067	.0144	.0023	0295
.900	7.04	04	.0042	.0044	0084	.0172	.0027	0340
.899	1.07	-2.01	.0001	.0054	0019	.0008	0006	0077
.902	1.07	.02	0012	.0055	0005	.0015	0004	0080
.899	1.06	3.01	0024	.0056	.0012	.0085	0004	0115
.902	1.06	6.00	0036	.0054	.0028	.0076	0003	0109
.903	1.07	8.99	0019	.0057	.0027	.0118	.0012	0163
.900	1.06	12.02	.0031	.0076	.0002	.0228	.0051	0242
.899	1.03	16.03	.0181	.0151	0110	.0256	.0103	0283
.898	1.01	18.00	.0227	.0193	0150	.0295	.0140	0313
.901	5.03	-2.04	.0044	.0045	0084	.0106	.0017	0279
.900	5.01	.01	.0029	.0048	0066	.0129	.0018	0292
.900	5.00	2.97	.0020	.0050	0052	.0184	.0025	0319
.900	5.00	5.99	.0014	.0051	0041	.0163	.0030	0308
.898	4.99	8.99	.0037	.0058	0041	.0220	.0051	0357
.898	4.99	11.99	.0097	.0084	0081	.0302	.0088	0426
.898	4.99	15.98	.0243	.0162	0196	.0381	.0154	0510
.899	5.00	18.00	.0295	.0209	0248	.0404	.0186	0542

Table 9. Continued

(b) Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
MACH	NFK	ALLIIA	ODMI	ODIII I	· · · · · ·	• ==-		
.600	1.02	.01	.0012	.0052	0039	.0055	.0004	0129
.601	1.99	04	.0028	.0049	0060	.0073	0004	0149
.600	3.00	03	.0047	.0049	0086	.0129	.0017	0243
.600	3.50	04	.0053	.0049	0095	.0145	.0016	0271
.601	5.01	04	.0074	.0049	0124	.0189	.0039	0345
.600	1.03	-2.02	.0000	.0050	0030	.0060	.0003	0132
.598	1.02	02	.0014	.0051	0040	.0083	.0006	0137
.600	1.02	2.99	.0030	.0054	0050	.0091	.0013	0135
.600	1.02	5.99	.0048	.0059	0064	.0117	.0026	0154
.603	1.01	9.02	.0074	.0067	0088	.0142	.0042	0173
.600	1.01	12.00	.0102	.0079	0120	.0165	.0058	0196
.599	1.00	15.99	.0199	.0119	0214	.0221	.0102	0233
.601	.99	18.01	.0251	.0148	0258	.0253	.0132	0254
. 598	3.49	-2.04	.0042	.0046	0088	.0152	.0018	0269
.600	3.52	02	.0054	.0048	0096	.0161	.0027	0278
.603	3.52	3.00	.0073	.0053	0109	.0176	.0034	0286
.601	3.51	6.01	.0094	.0061	0126	.0196	.0047	0305
.601	3.51	8.98	.0120	.0071	0153	.0219	.0062	0326
.600	3.51	12.00	.0148	.0087	0185	.0244	.0087	0357
.600	3.51	15.99	.0257	.0134	0291	.0313	.0134	0417
.597	3.50	17.96	.0310	.0166	0339	.0355	.0162	0451
.601	.98	20.00	.0275	.0173	0292	.0270	.0153	0265
.599	2.03	19.97	.0306	.0183	0336	.0305	.0151	0371
.600	3.01	19.95	.0320	.0189	0358	.0328	.0171	0425
.600	3.51	19.96	.0331	.0193	0373	.0346	.0180	0462
.599	5.00	19.95	.0355	.0203	0409	.0378	.0216	0547
.600	1.00	16.52	.0198	.0123	0226	.0196	.0096	0226
.599	.99	17.97	.0229	.0141	0251	.0218	.0115	0241
.597	.98	19.96	.0273	.0173	0293	.0247	.0144	0262
.600	.97	23.97	.0416	.0277	0453	.0286	.0211	0299
.601	.95	27.96	.0556	.0409	0646	.0332	.0282	0349
.600	.92	31.96	.0730	.0600	0936	.0337	.0365	0407 0400
.598	3.49	16.15	.0242	.0132	0290	.0264	.0112	0435
.601	3.50	17.95	.0283	.0158	0324	.0313	.0145	0433
.598	3.49	19.97	.0328	.0192	0371	.0346	.0173	0463
.600	3.49	23.98	.0485	.0308	0550	.0390	.0242	0518
.600	3.49	27.95	.0612	.0440	0731	.0428	.0324	0579
.601	3.50	31.97	.0792	.0644	1037	.0439	.0422	00/3

Table 9. Concluded

(b) Concluded

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.150	1.00	.01	.0030	.0058	0064	.0351	.0008	0263
.151	2.01	03	.0063	.0067	0111	.0363	.0078	0335
.151	2.60	03	.0094	.0075	0150	.0322	.0221	0369
.151	3.04	01	.0090	.0076	0146	.0249	.0188	0316
.150	3.76	.00	.0118	.0084	0182	.0327	.0104	0434
.152	1.00	-1.59	.0019	.0069	0068	.0018	0030	0119
.150	1.00	01	.0029	.0066	0077	.0039	0045	0119
.151	1.00	3.00	.0064	.0073	0109	.0031	0036	0099
.150	1.00	6.00	.0050	.0071	0077	.0050	0048	0115
.151	1.00	8.99	.0088	.0082	0117	.0177	.0123	0113
.151	1.00	11.99	.0126	.0095	0160	.0193	.0123	0173
.150	1.00	16.01	.0178	.0118	0211	.0277	.0221	01/4
.151	1.00	18.00	.0270	.0160	0314	.0301	.0256	0247
.150	2.61	-1.96	.0062	.0075	0106	.0166	.0236	0328
.150	2.62	03	.0084	.0076	0127	.0127	.0213	0328
.151	2.62	3.00	.0067	.0080	0096	.0193	.0209	0350
.150	2.61	5.99	.0095	.0088	0119	.0194	.0209	0353
.150	2.61	8.99	.0114	.0097	0133	.0179	.0253	0353
.150	2.62	12.00	.0152	.0113	0178	.0263	.0274	0369
.149	2.61	15.98	.0222	.0147	0266	.0296	.0344	0406
.149	2.61	17.86	.0311	.0190	0369	.0290	.0378	0478
.149	1.00	20.02	.0247	.0167	0282	.0210	.0133	0201
.149	2.01	19.99	.0274	.0190	0321	.0085	.0080	0173
.152	2.63	19.97	.0275	.0200	0336	.0038	.0158	0226
.153	3.01	19.96	.0276	.0202	0344	.0142	.0182	0336
.148	3.80	19.96	.0310	.0229	0404	.0146	.0230	0413
.149	1.00	15.98	.0173	.0126	0234	0008	.0071	0115
.152	1.00	17.96	.0221	.0145	0285	.0069	.0082	0173
.149	1.00	19.97	.0259	.0169	0315	.0138	.0135	0173
.150	1.00	23.98	.0300	.0219	0335	.0329	.0233	0328
.147	1.00	27.97	.0432	.0329	0502	.0391	.0315	0369
.148	1.00	31.96	.0550	.0461	0678	.0495	.0461	0471
.151	1.00	34.98	.0638	.0574	0829	.0487	.0512	0471
.149	2.59	15.97	.0198	.0143	0248	.0169	.0301	0427
.149	2.59	17.97	.0234	.0157	0286	.0190	.0317	0427
.148	2.59	19.97	.0295	.0191	0353	.0165	.0317	0439
.151	2.59	23.97	.0317	.0235	0358	.0231	.0335	0508
.151	2.59	27.98	.0462	.0356	0537	.0284	.0366	0522
.151	2.59	31.97	.0570	.0494	0707	.0350	.0450	0613
.150	2.59	34.96	.0667	.0623	0877	.0322	.0478	0638

Table 10. Longitudinal Aerodynamic Characteristics for A/B Nozzle With 100/25 A/B Sidewalls and $\delta_{v,p}=0^\circ$

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.201	.95	01	0095	.0175	.0058	0095	.0175	.0058
1.198	3.01	.00	0086	0147	.0065	0086	.0165	.0035
1.198	5.00	.01	0106	0452	.0122	0106	.0159	.0062
1.200	6.98	.02	0110	0762	.0159	0110	.0144	.0069
1.200	9.01	.01	0111	1084	.0190	0112	.0128	.0069
1.203	.95	-2.02	0221	.0191	.0139	0221	.0191	.0139
1.199	.93	.00	0105	.0180	.0055	0105	.0180	.0055
1.200	.91	3.02	.0053	.0187	0062	.0054	.0187	0062
1.201	.89	6.00	.0216	.0222	0199	.0216	.0222	0199
1.201	.87	9.02	.0349	.0288	0310	.0350	.0288	0310
1.198	.81	12.01	.0468	.0378	0453	.0469	.0378	0453
1.200	.75	15.99	.0623	.0475	0618	.0624	.0475	0618
1.198	.70	18.01	.0723	.0543	0730	.0724	.0543	0730
1.201	7.00	-2.03	0262	0752	.0226	0230	.0155	.0136
1.201	7.00	01	0120	0763	.0161	0120	.0145	.0071
1.200	7.00	3.00	.0066	0759	.0091	.0019	.0149	.0000
1.200	7.00	6.03	.0271	0726	0020	.0175	.0178	0110
1.200	6.99	9.01	.0461	0663	0143	.0320	.0235	0233
1.201	7.01	12.00	.0637	0582	0286	.0449	.0308	0377
1.196	6.96	16.02	.0870	0469	0466	.0620	.0406	0557
1.199	6.99	18.00	.0995	0405	0571	.0715	.0460	0661
.903	1.09	.00	0075	.0035	.0050	0075	.0035	.0050
.902	2.00	02	0070	0258	.0075	0070	.0027	.0049
.901	3.03	01	0076	0518	.0111	0076	.0038	.0057
.898	5.03	.00	0075	1062	.0165	0075	.0033	.0057
.900	7.03	.02	0084	1605	.0224	0085	.0020	.0062
.899	1.11	-2.02	0070	.0034	.0034	0071	.0034	.0034
.902	1.09	02	0076	.0036	.0050	0076	.0036	.0050
.901	1.09	2.98	0043	.0031	.0057	0043	.0031	.0057
.900	1.10	6.00	0061	.0024	.0076	0061	.0025	.0076
.902	1.10	9.01	0034	.0027	.0074	0034	.0028	.0074
.900	1.10	11.99	.0136	.0076	0031	.0136	.0076	0031
.899	1.09	16.00	.0284	.0174	0146	.0285	.0174	0146
.898	1.08	18.00	.0364	.0249	0217	.0365	.0249	0217
.899	4.99	-2.04	0130	1051	.0156	0091	.0032	.0049
.902	5.01	03	0095	1051	.0169	0095	.0030	.0063
.901	5.00	2.98	0005	1056	.0171	0061	.0025	.0064
.896	4.98	6.02	.0034	1062	.0193	0079	.0021	.0085
.901	5.01	9.00	.0127	1045	.0185	0042	.0024	.0078
.899	4.99	12.01	.0352	0990	.0077	.0127	.0072	0030
.899	4.99	16.03	.0595	0867	0067	.0296	.0175	0174
.901	5.00	17.99	.0717	0781	0149	.0384	.0249	0256

Table 10. Continued

(a) Concluded

.600	1.03							
• 000		.00	0076	.0049	.0040	0076	.0049	.0040
.603	2.01	.02	0058		.0093	0058	.0040	.0034
.598	2.99	.02	0058		.0159	0059	.0051	.0039
.597	3.50	.02	0055		.0190	0055	.0051	.0038
.600	5.00	.02	0051		.0275	0052	.0044	.0035
.599	1.03	-1.89	0069		.0037	0069	.0043	.0037
.601	1.03	02	0042	.0041	.0031	0042	.0041	.0031
.604	1.03	3.00	0015	.0042	.0029	0015	.0042	.0029
.601	1.03	6.01	.0017	.0049	.0015	.0018	.0049	.0015
.601	1.03	9.00	.0058	.0059	0013	.0059	.0059	0013
.599	1.03	12.00	.0106	.0076	0059	.0106	.0076	0059
.600	1.03	15.99	.0258	.0139	0181	.0259	.0140	0181
.598	1.02	18.00	.0342	.0191	0239	.0343	.0191	0239
.599	3.48	-1.83	0103	1486	.0191	0055	.0047	.0042
.602	3.54	02	0037	1502	.0184	0036	.0045	.0033
.600	3.50	2.98	.0071	1489	.0176	0008	.0045	.0026
.599	3.50	6.03	.0180	1479	.0165	.0019	.0051	.0015
.600	3.50	9.00	.0301	1455	.0130	.0062	.0059	0019
.603	3.51	12.01	.0428	1413	.0078	.0111	.0078	0070
.598	3.49	15.98	.0697	1339	0059	.0274	.0143	0209
.600	3.50	18.01	.0836	1267	0127	.0363	.0193	0277
.151	1.00	.00	0062	.0192	0015	0062	.0192	0015
.149	1.99	.01	.0045	-1.0258	.0894	.0044	.0018	0042
.150	2.61	.02		-1.5807	.1525	.0013	.0201	.0003
.150	3.00	.02		-1.9654	.1917	.0021	.0145	.0011
.152	3.79	.02		-2.6482	.2583	.0040	.0125	0019
.151	1.03	-1.53	0002	0019	0008	0002	0019	0008
.151	1.00	.03	.0271	.0085	0109	.0271	.0085	0109
.151	1.00	2.99	.0289	.0086	0102	.0289	.0086	0102
.150	1.00	5.99	.0326	.0103	0102	.0327	.0103	0102
.149	1.00	8.98	.0344	.0150	0128	.0344	.0150	0128
.149	1.00	11.99	.0404	.0217	0185	.0405	.0217	0185
.151	1.00	15.99	.0534	.0286	0297	.0535	.0286	0297
.151	1.00	18.00	.0585	.0366	0377	.0586	.0366	0377
.149	2.61	-1.55	0264		.1534	.0178	.0167	0014
.151	2.61	.02		-1.5804	.1493	.0176	.0164	0024
.151	2.61	2.98		-1.5734	.1501	.0155	.0207	0016
.151	2.61	5.99		-1.5564	.1495	.0151	.0190	0010
.151	2.61	9.01		-1.5474	.1448	.0261	.0237	0064
.150	2.61	11.99		-1.5447	.1431	.0289	.0267	0096
.150	2.61	15.99		-1.5211	.1312	.0432	.0356	0227
.151	2.61	17.99	. 5489	-1.4790	.1178	.0547	.0437	0343

Table 10. Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.201	.95	01	0086	.0084	.0083	0009	.0091	0024
1.198	3.01	.00	0084	.0086	.0080	0002	.0079	0045
1.198	5.00	.01	0084	.0086	.0080	0022	.0073	0018
1.200	6.98	.02	0084	.0086	.0080	0026	.0058	0011
1.200	9.01	.01	0085	.0086	.0080	0027	.0041	0011
1.203	.95	-2.02	0169	.0093	.0149	0052	.0098	0010
1.199	.93	.00	0083	.0087	.0079	0022	.0093	0024
1.200	.91	3.02	.0038	.0093	0023	.0016	.0094	0039
1.201	.89	6.00	.0180	.0116	0159	.0036	.0107	0040
1.201	.87	9.02	.0301	.0151	0287	.0049	.0137	0023
1.198	.81	12.01	.0403	.0198	0416	.0065	.0181	0038
1.200	.75	15.99	.0528	.0264	0553	.0096	.0211	0066
1.198	.70	18.01	.0603	.0308	0637	.0121	.0235	0092
1.201	7.00	-2.03	0169	.0094	.0150	0061	.0061	0013
1.201	7.00	01	0083	.0088	.0077	0037	.0057	0006
1.200	7.00	3.00	.0036	.0093	0023	0018	.0056	.0024
1.200	7.00	6.03	.0181	.0116	0161	0005	.0062	.0051
1.200	6.99	9.01	.0301	.0153	0288	.0018	.0083	.0055
1.201	7.01	12.00	.0406	.0198	0418	.0043	.0110	.0041
1.196	6.96	16.02	.0530	.0267	0556	.0090	.0139	0001
1.199	6.99	18.00	.0605	.0309	0642	.0109	.0152	0020
.903	1.09	.00	0033	.0058	.0028	0042	0023	.0021
.902	2.00	02	0034	.0053	.0030	0036	0026	.0019
.901	3.03	01	0034	.0054	.0030	0042	0016	.0027
.898	5.03	.00	0035	.0053	.0031	0040	0020	.0025
.900	7.03	.02	0035	.0051	.0032	0050	0031	.0031
.899	1.11	-2.02	0019	.0058	.0012	0052	0024	.0022
.902	1.09	02	0034	.0059	.0030	0042	0023	.0020
.901	1.09	2.98	0052	.0058	.0056	.0010	0026	.0001
.900	1.10	6.00	0060	.0055	.0067	.0000	0030	.0009
.902	1.10	9.01	0049	.0057	.0072	.0015	0029 .0005	.0002
.900	1.10	11.99	0005	.0071	.0053	.0141	.0034	0088
.899	1.09	16.00	.0140	.0140	0058	.0171	.0063	0117
.898	1.08	18.00	.0194 0021	.0186	0100 .0014	0071	0021	.0035
.899	4.99	-2.04		.0054	.0014	0071	0021	.0033
.902	5.01	03 2.98	0034 0052	.0052	.0056	0001	0027	.0008
.901	5.00			.0052	.0050	0026	0029	.0023
.896	4.98	6.02	0053 0045	.0050	.0062	.0003	0027	.0023
.901	5.01	9.00	0043	.0051	.0045	.0128	.0005	0075
.899	4.99	12.01 16.03	.0151	.0141	0072	.0125	.0034	0102
.899	4.99	17.99	.0205	.0141	0116	.0179	.0062	0139
.901	5.00	1/.99	.0203	•0107	0110	.01/7	.0002	

Table 10. Concluded

(b) Concluded

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.600	1.03	.00	0033	.0055	.0029	0042	0006	.0011
.603	2.01	.02	0033	.0051	.0030	0025	0011	.0005
.598	2.99	.02	0033	.0052	.0029	0026	0001	.0011
.597	3.50	.02	0033	.0052	.0029	0023	0001	.0009
.600	5.00	.02	0032	.0052	.0029	0020	0007	.0006
.599	1.03	-1.89	0037	.0055	.0028	0032	0012	.0009
.601	1.03	02	0031	.0054	.0028	0011	0012	.0003
.604	1.03	3.00	0019	.0054	.0024	.0005	0012	.0005
.601	1.03	6.01	0005	.0056	.0015	.0023	0007	.0000
.601	1.03	9.00	.0019	.0061	0008	.0039	0002	0006
.599	1.03	12.00	.0047	.0070	0038	.0059	.0006	0021
.600	1.03	15.99	.0147	.0106	0134	.0112	.0033	0047
.598	1.02	18.00	.0194	.0131	0172	.0149	.0059	0067
.599	3.48	-1.83	0037	.0051	.0029	0018	0004	.0013
.602	3.54	02	0031	.0050	.0030	0005	0006	.0004
.600	3.50	2.98	0018	.0051	.0024	.0010	0006	.0002
.599	3.50	6.03	0004	.0052	.0015	.0023	0001	.0000
.600	3.50	9.00	.0020	.0057	0007	.0042	.0003	0013
.603	3.51	12.01	.0053	.0067	0045	.0058	.0010	0026
.598	3.49	15.98	.0154	.0105	0143	.0119	.0038	0066
.600	3.50	18.01	.0206	.0132	0187	.0157	.0061	0090
.151	1.00	.00	0009	.0076	0019	0053	.0116	.0004
.149	1.99	.01	0014	.0078	0012	.0058	0059	0030
.150	2.61	.02	0024	.0076	.0002	.0037	.0125	.0001
.150	3.00	.02	0025	.0075	.0007	.0046	.0069	.0004
.152	3.79	.02	0018	.0079	.0003	.0059	.0046	0022
.151	1.03	-1.53	0022	.0055	.0015	.0020	0074	0023
.151	1.00	.03	0033	.0051	.0038	.0304	.0034	0147
.151	1.00	2.99	0017	.0050	.0025	.0306	.0036	0127
.150	1.00	5.99	0016	.0047	.0034	.0343	.0056	0136
.149	1.00	8.98	.0003	.0052	.0019	.0341	.0099	0147
.149	1.00	11.99	.0058	.0066	0044	.0347	.0151	0141
.151	1.00	15.99	.0143	.0098	0137	.0392	.0188	0160
.151	1.00	18.00	.0184	.0121	0179	.0402	.0246	0199
.149	2.61	-1.55	0022	.0065	.0023	.0200	.0102	0036
.151	2.61	.02	0019	.0061	.0022	.0195	.0103	0046
.151	2.61	2.98	0008	.0065	.0018	.0164	.0142	0034
.151	2.61	5.99	0024	.0060	.0045	.0175	.0129	0055
.151	2.61	9.01	.0007	.0068	.0011	.0254	.0169	0075
.150	2.61	11.99	.0046	.0076	0033	.0244	.0191	0062
.150	2.61	15.99	.0115	.0104	0104	.0317	.0252	0123
.151	2.61	17.99	.0157	.0126	0144	.0390	.0311	0199

Table 11. Lateral Aerodynamic Characteristics for A/B Nozzle With 100/25 A/B Sidewalls and $\delta_{v,p}=0^\circ$

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	CY
1.201	.95	01	.0000	.0009	0012	.0000	.0009	0012
1.198	3.01	.00	.0000	.0004	0009	.0000	.0007	0011
1.198	5.00	.01	.0001	.0021	0032	.0001	.0007	0009
1.200	6.98	.02	.0003	.0036	0054	.0003	.0006	0007
1.200	9.01	.01	.0004	.0052	0076	.0004	.0005	0004
1.200	.95	-2.02	.0000	.0009	0012	.0000	.0009	0012
1.199	.93	.00	.0001	.0010	0014	.0001	.0010	0014
1.200	.91	3.02	.0001	.0010	0020	.0001	.0010	0020
1.200	.89	6.00	.0002	.0009	0024	.0002	.0009	0024
1.201	.87	9.02	.0002	.0011	0024	.0002	.0011	0024
1.198	.81	12.01	.0001	.0001	0020	.0001	.0001	0020
1.200	.75	15.99	.0001	0004	0012	.0001	0004	0012
1.198	.70	18.01	.0001	0004	0011	.0001	0004	0011
1.201	7.00	-2.03	.0003	.0036	0054	.0003	.0005	0006
1.201	7.00	01	.0003	.0037	0056	.0003	.0007	0009
1.200	7.00	3.00	.0004	.0038	0060	.0004	.0008	0013
1.200	7.00	6.03	.0004	.0038	0063	.0004	.0007	0015
1.200	6.99	9.01	.0005	.0042	0068	.0005	.0011	0021
1.201	7.01	12.00	.0005	.0037	0075	.0005	.0007	0027
1.196	6.96	16.02	.0005	.0038	0076	.0005	.0008	0029
1.199	6.99	18.00	.0006	.0038	0076	.0006	.0007	0029
.903	1.09	.00	.0002	.0006	0024	.0002	.0006	0024
.902	2.00	02	.0001	0012	0002	.0001	.0000	0016
.901	3.03	01	.0001	0007	0010	.0001	0001	0013
.898	5.03	.00	.0004	.0024	0054	.0004	.0000	0013
.900	7.03	.02	.0006	.0054	0096	.0006	.0000	0012
.899	1.11	-2.02	.0002	.0006	0023	.0002	.0006	0023
.902	1.09	02	.0002	.0006	0023	.0002	.0006	0023
.901	1.09	2.98	.0002	.0006	0025	.0002	.0006	0025
.900	1.10	6.00	.0001	.0003	0019	.0001	.0003	0019
.902	1.10	9.01	.0001	.0002	0016	.0001	.0002	0016
.900	1.10	11.99	.0001	.0002	0017	.0001	.0002	0017
.899	1.09	16.00	.0001	.0000	0013	.0001	.0000	0013
.898	1.08	18.00	.0002	.0001	0020	.0002	.0001	0020
.899	4.99	-2.04	.0003	.0023	0050	.0003	0001	0010
.902	5.01	03	.0003	.0023	0050	.0003	0001	0010
.901	5.00	2.98	.0003	.0023	0050	.0003	0001	0010
.896	4.98	6.02	.0003	.0023	0052	.0003	0001	0012
.901	5.01	9.00	.0003	.0021	0046	.0003	0003	0006
.899	4.99	12.01	.0003	.0020	0044	.0003	0004	0004
.899	4.99	16.03	.0003	.0021	0047	.0003	0003	0007
.901	5.00	17.99	.0004	.0023	0055	.0004	0001	0015

Table 11. Concluded

MACH	NPR	ALPHA	CROLLI	CNT	CYT	CROLL	CN	CY
.600	1.03	.00	.0003	.0003	0020	.0003	.0003	0020
.603	2.01	.02	0001	0028	.0019	_	0001	0020
.598	2.99	.02	.0000	0013	0006	.0000	0001	0012
.597	3.50	.02	.0002	.0005	0032	.0002	.00001	0014
.600	5.00	.02	.0007	.0056	0107	.0007	.0001	0017
.599	1.03	-1.89	.0003	.0003	0020	.0003	.0003	0020
.601	1.03	02	.0003	.0003	0022	.0003	.0003	0022
.604	1.03	3.00	.0003	.0004	0023	.0003	.0004	0023
.601	1.03	6.01	.0003	.0003	0022	.0003	.0003	0022
.601	1.03	9.00	.0003	.0001	0018	.0003	.0001	0018
.599	1.03	12.00	.0003	.0001	0021	.0003	.0001	0021
.600	1.03	15.99	.0002	.0003	0026	.0002	.0003	0026
.598	1.02	18.00	.0002	.0002	0027	.0002	.0002	0027
.599	3.48	-1.83	.0001	.0004	0033	.0001	.0001	0018
.602	3.54	02	.0002	.0006	0036	.0002	.0001	0018
.600	3.50	2.98	.0002	.0005	0036	.0002	.0001	0020
.599	3.50	6.03	.0002	.0005	0036	.0002	.0001	0020
.600	3.50	9.00	.0002	.0004	0033	.0002	.0000	0017
.603	3.51	12.01	.0002	.0005	0036	.0002	.0001	0020
.598	3.49	15.98	.0003	.0006	0041	.0003	.0002	0025
.600	3.50	18.01	.0003	.0008	0050	.0003	.0004	0034
.151	1.00	.00	.0026	.0042	0225	.0026	.0042	0225
.149	1.99	.01	0015	0420	.0294	0015	.0028	0217
.150	2.61	.02	0012	0333	.0142	0012	.0001	0177
.150	3.00	.02	0001	0162	0105	0001	.0041	0245
.152	3.79	.02	.0025	.0233	0649	.0025	.0018	0177
.151	1.03	-1.53	.0022	.0039	0192	.0022	.0039	0192
.151	1.00	.03	.0021	.0043	0211	.0021	.0043	0211
.151	1.00	2.99	.0020	.0038	0192	.0020	.0038	0192
.150	1.00	5.99	.0016	.0034	0161	.0016	.0034	0161
.149 .149	1.00	8.98	.0016	.0033	0161	.0016	.0033	0161
.149	1.00	11.99	.0015	.0030	0143	.0015	.0030	0143
.151	1.00	15.99	.0014	.0027	0137	.0014	.0027	0137
.149	1.00 2.61	18.00	.0013	.0026	0121	.0013	.0026	0121
.151	2.61	-1.55	0018	0353	.0214	0018	0012	0112
.151		.02	0017	0345	.0210	0017	0012	0108
.151	2.61 2.61	2.98	0017	0344	.0209	0017	0012	0107
.151	2.61	5.99 9.01	0020	0345	.0226	0020	0016	0089
.150	2.61	11.99	0020 0023	0352	.0244	0020	0021	0072
.150	2.61	15.99		0355	.0263	0023	0021	0056
.151	2.61	17.99		0357	.0250	0022	0019	0072
. 171	2.01	1/.77	0022	0350	.0246	0022	0017	0072

Table 12. Longitudinal Aerodynamic Characteristics for Dry Nozzle With 100/25 A/B Sidewalls and $\delta_{v,p}=0^\circ$

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
1.200	.93	.01	0075	.0167	.0050	0075	.0167	.0050
1.200	2.96	.01	0077	0042	.0064	0077	.0166	.0044
1.200	5.01	.02	0087	0246	.0095	0088	.0171	.0056
1.202	7.06	.01	0103	0463	.0137	0104	.0163	.0080
1.202	8.96	.02	0103	0672	.0154	0102	.0150	.0078
1.200	.94	-2.01	0230	.0184	.0185	0230	.0184	.0185
1.202	.92	.01	0078	.0171	.0033	0078	.0171	.0033
1.202	.88	3.01	.0115	.0195	0142	.0115	.0195	0142
1.201	.84	6.00	.0311	.0250	0329	.0311	.0250	0329
1.200	.80	9.01	.0424	.0317	0408	.0424	.0317	0408
1.200	.77	11.99	.0570	.0401	0559	.0571	.0401	0559
1.202	.76	16.02	.0725	.0506	0704	.0726	.0506	0704
1.197	.76	18.00	.0810	.0571	0798	.0811	.0571	0798
1.202	7.03	-2.01	0213	0446	.0197	0191	.0177	.0140
1.202	7.06	.01	0088	0457	.0129	0088	.0169	.0071
1.201	7.00	3.03	.0094	0441	.0027	.0061	.0179	0030
1.200	6.99	5.99	.0292	0408	0095	.0228	.0209	0153
1.200	6.98	9.01	.0463	0333	0221	.0366	.0279	0278
1.201	6.99	12.00	.0649	0255	0378	.0521	.0352	0435
1.203	7.01	15.99	.0859	0146	0551	.0689	.0450	0608
1.199	6.98	17.98	.0981	0073	0662	.0791	.0517	0720
.899	1.10	03	0085	.0039	.0045	0085	.0039	.0045
.900	2.01	01	0090	0164	.0082	0090	.0031	.0062
.897	2.99	01	0081	0338	.0091	0081	.0038	.0055
.896	4.97	.00	0077	0701	.0123	0077	.0040	.0054
.902	7.01	.00	0076	1071	.0158	0076	.0033	.0056
.899	1.11	-2.03	0069	.0040	.0033	0069	.0040	.0033
.900	1.10	.03	0067	.0040	.0038	0067	.0040	.0038
.903	1.10	3.03	0016	.0038	.0036	0015	.0038	.0036
.901	1.10	6.00	0023	.0036	.0035	0022	.0036	.0035
.902	1.10	9.01	.0045	.0047	0023	.0046	.0047	0023
.901	1.10	11.99	.0200	.0099	0119	.0201	.0100	0119
.901	1.09	16.03	.0375	.0215	0254	.0376	.0215	0254
.900	1.06	18.00	.0423	.0277	0257	.0424	.0278	0257
.901	4.99	-2.02	0093	0695	.0102	0067	.0041	.0034
.900	4.99	.00	0072	0699	.0120	0072	.0038	.0051
.900	5.00	3.03	.0013	0702	.0120	0026	.0038	.0051
.903	5.01	6.01	.0033	0701	.0143	0044	.0032	.0074
.899	4.99	8.99	.0107	0694	.0123	0008	.0037	.0054
.900	4.99	12.01	.0322	0634	.0010	.0169	.0088	0059
.902	5.00	16.03	.0553	0507	0134	.0350	.0202	0203
.898	4.99	17.99	.0659	0432	0206	.0432	.0273	0275

Table 12. Continued

(a) Continued

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.600	1.04	.00	0081	.0037	.0043	0081	.0037	.0043
.601	1.98	.02	0085	0410	.0109	0085	.0015	.0067
.601	2.99	.01	0070	0813	.0125	0070	.0027	.0045
.599	3.50	.01	0069	1019	.0145	0069	.0035	.0046
.597	4.98	.00	0056	1639	.0197	0056	.0035	.0041
.603	1.04	-1.90	0016	.0049	.0010	0016	.0049	.0010
.599	1.04	.00	.0000	.0048	.0016	.0000	.0048	.0016
.600	1.04	2.99	.0017	.0047	.0028	.0017	.0047	.0028
.599	1.04	6.00	.0064	.0056	0008	.0064	.0056	0008
.600	1.05	8.99	.0092	.0065	0026	.0093	.0065	0026
.599	1.05	12.00	.0145	.0085	0067	.0146	.0085	0067
.600	1.05	15.99	.0297	.0148	0185	.0298	.0148	0185
.599	1.05	18.02	.0371	.0195	0234	.0372	.0196	0234
.599	3.53	-1.88	0060	1021	.0127	0025	.0044	.0027
.601	3.51	.03	0004	1003	.0119	0005	.0046	.0020
.600	3.50	3.00	.0072	1000	.0117	.0017	.0046	.0018
.599	3.49	6.00	.0157	0994	.0105	.0048	.0049	.0006
.601	3.49	9.00	.0252	0969	.0073	.0089	.0061	0025
.601	3.49	12.00	.0356	0943	.0026	.0140	.0078	0072
.603	3.50	16.00	.0584	0856	0109	.0299	.0142	0207
.596	3.48	18.01	.0716	0810	0175	.0391	.0195	0274
.600	1.05	20.02	.0395	.0221	0251	.0396	.0221	0251
.600	2.00	20.01	.0537	0212	0200	.0389	.0197	0243
.600	3.00	20.00	.0703	0581	0223	.0415	.0214	0304
.599	3.51	20.02	.0782	0777	0213	.0423	.0214	0312
.599	5.03	20.00	.1005	1365	0174	.0431	.0215	0331
.600	1.05	16.66	.0262	.0138	0181	.0263	.0138	0181
.599	1.05	18.00	.0311	.0166	0210	.0313	.0166	0210
.599	1.05	19.99	.0373	.0212	0247	.0374	.0212	0247
.601	1.03	23.98	.0540	.0360	0404	.0542	.0360	0404
.599	1.01	27.98	.0722	.0566	0633	.0724	.0566	0633
.599	. 98	31.99	.0863	.0803	0903	.0865	.0803	0903
.602	3.48	16.82	.0569	0862	0117	.0271	.0128	0214
.599	3.49	17.98	.0650	0841	0153	.0327	.0158	0252
.599	3.49	19.99	.0769	0778	0211	.0411	.0209	0310
.598	3.49	23.98	.1016	0605	0392	.0589	.0360	0492
.598	3.50	27.97	.1307	0350	0689	.0814	.0582	0788
.599	3.50	31.99	.1547	0055	1017	.0991	.0838	1116

Table 12. Continued

(a) Concluded

MACH	NPR	ALPHA	CLT	C(D-F)	CMT	CL	CD	CM
.152	1.00	.02	.0205	.0253	0121	.0205	.0253	0121
.150	2.02	.02	.0184	7185	.0717	.0181	0065	.0015
.150	2.61	.01		-1.0952	.0915	.0307	.0002	0137
.151	2.98	.01		-1.3186	.1125	.0322	.0056	0134
.151	3.86	.00		-1.8846	.1652	.0332	.0098	0128
.149	1.00	-1.32	.0382	.0233	0154	.0382	.0233	0154
.151	1.00	.03	.0401	.0173	0144	.0401	.0173	0144
.151	1.00	3.03	.0375	.0197	0107	.0375	.0197	0107
.149	1.00	6.03	.0416	.0187	0127	.0416	.0187	0127
.150	1.00	8.99	.0485	.0253	0162	.0485	.0253	0162
.151	1.00	11.99	.0507	.0274	0191	.0508	.0274	0191
.150	1.00	16.02	.0571	.0378	0281	.0572	.0378	0281
.150	1.00	18.00	.0691	.0448	0392	.0692	.0448	0392
.151	2.60	-1.36	0003	-1.0686	.0967	.0250	0012	0058
.151	2.60	.03	.0257	-1.0706	.0980	.0251	0028	0045
.153	2.60	3.02		-1.0521	.0959	.0274	0019	0051
.152	2.60	6.04		-1.0494	.0977	.0245	.0014	0038
.152	2.60	9.00		-1.0405	.0929	.0334	.0034	0086
.152	2.60	11.99		-1.0321	.0916	.0339	.0042	0102
.151	2.60	15.99		-1.0177	.0774	.0501	.0118	0254
.151	2.60	18.02		-1.0041	.0693	.0561	.0181	0339
.153	1.00	20.00	.0483	.0210	0273	.0484	.0210	0273
.150	1.98	20.00	.2804	6343	.0596	.0486	.0029	0074
.149	2.59	19.98		-1.0083	.0614	.0651	.0192	0436
.150	3.03	19.98		-1.2708	.0849	.0698	.0234	0459
.150	3.81	19.99		-1.7498	.1327	.0704	.0227	0446
.150	2.79	15.99		-1.1673	.0964	.0199	0029	0193
.150	1.01	15.99	.0098	.0106	0092	.0099	.0106	0092
.150	1.00	17.98	.0199	.0121	0172	.0200	.0122	0172
.151	1.00	19.98	.0368	.0200	0261	.0369	.0200	0261
.151 .151	$\frac{1.00}{1.00}$	23.98	.0539	.0339	0371 0583	.0540	.0339	0371
.151	1.00	27.99 31.99	.0734	.0563	0798	.0756 .0926	.0564 .0794	0583 0798
.153	1.00	35.10	.0924	.0793	0798	.1000	.0794	0798
.149	2.63	15.98		-1.0684	.0755	.0508	.0122	0324
.149	2.60	17.98		-1.0316	.0619	.0675	.0175	0324
.149	2.60	19.98		-1.0189	.0600	.0684	.0225	0464
.152	2.60	23.99	.5147	9411	.0474	.0804	.0352	0552
.150	2.60	27.98	.6086	9178	.0329	.0940	.0511	0724
.153	2.61	31.98	.6688	8252	.0055	.1102	.0698	0958
.152	2.61	34.97	.7293	7816	0144	.1203	.0895	1165

Table 12. Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
1.200	.93	.01	0083	.0084	.0080	.0008	.0083	0030
1.200	2.96	.01	0081	.0084	.0078	.0004	.0082	0035
1.200	5.01	.02	0081	.0085	.0078	0006	.0086	0022
1.202	7.06	.01	0082	.0085	.0078	0021	.0078	.0001
1.200	8.96	.02	0082	.0086	.0078	0020	.0064	.0000
1.201	.94	-2.01	0166	.0091	.0149	0064	.0093	.0036
1.202	.92	.01	0077	.0086	.0074	.0000	.0086	0041
1.202	.88	3.01	.0052	.0092	0037	.0063	.0103	0105
1.201	.84	6.00	.0197	.0116	0174	.0114	.0134	0155
1.200	.80	9.01	.0304	.0154	0299	.0120	.0163	0109
1.200	.77	11.99	.0421	.0201	0436	.0150	.0200	0124
1.202	.76	16.02	.0547	.0268	0574	.0179	.0238	0129
1.197	.76	18.00	.0618	.0313	0660	.0193	.0258	0138
1.202	7.03	-2.01	0166	.0092	.0148	0026	.0085	0008
1.202	7.06	.01	0078	.0086	.0074	0010	.0083	0003
1.201	7.00	3.03	.0045	.0092	0032	.0017	.0086	.0002
1.200	6.99	5.99	.0192	.0116	0171	.0036	.0093	.0018
1.200	6.98	9.01	.0303	.0154	0299	.0063	.0125	.0021
1.201	6.99	12.00	.0421	.0201	0436	.0100	.0150	.0001
1.203	7.01	15.99	.0545	.0267	0574	.0145	.0183	0034
1.199	6.98	17.98	.0620	.0313	0664	.0171	.0204	0056
.899	1.10	03	0031	.0060	.0024	0054	0021	.0021
.900	2.01	01	0035	.0057	.0029	0055	0026	.0033
.897	2.99	01	0035	.0057	.0030	0046	0019	.0025
.896	4.97	.00	0034	.0057	.0029	0043	0018	.0025
.902	7.01	.00	0033	.0056	.0028	0043	0023	.0028
.899	1.11	-2.03	0017	.0058	.0011	0052	0019	.0023
.900	1.10	.03	0031	.0059	.0024	0036	0019	.0014
.903	1.10	3.03	0050	.0059	.0052	.0034	0020	0015
.901	1.10	6.00	0052	.0056	.0053	.0029	0020	0018
.902	1.10	9.01	0030	.0059	.0047	.0076	0012	0070
.901	1.10	11.99	.0010	.0075	.0033	.0191	.0024	0151
.901	$\frac{1.09}{1.06}$	16.03	.0159	.0150	0076	.0217	.0065	0179
.900		18.00 -2.02	.0199 0017		0102	.0225	.0087	0155
.901	4.99 4.99	.00	0017	.0056 .0057	.0010	0050 0038	0015	.0024
.900		3.03	0033	.0057	.0028	.0022	0018	.0023
.900	5.00 5.01	6.01					0018 0020	0001
.903 .899	4.99	8.99	0061 0036	.0052	.0067	.0017	0020	.0007
.900	4.99	12.01	.0006	.0033	.0039	.0029	.0019	0003
.900	5.00	16.03	.0158	.0149	0072	.0103	.0017	0131
.898	4.99	17.99	.0211	.0149	0122	.0192	.0034	0151
.070	4.77	エノ・フブ	.0211	.0130	0122	.0221	.0003	0173

Table 12. Continued

(b) Continued

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.600	1.04	.00	0028	.0055	.0024	0053	0019	.0019
.601	1.98	.02	0031	.0053	.0030	0054	0038	.0037
.601	2.99	.01	0032	.0054	.0031	0038	0026	.0014
.599	3.50	.01	0031	.0054	.0029	0038	0019	.0017
.597	4.98	.00	0032	.0053	.0030	0024	0018	.0011
.603	1.04	-1.90	0033	.0054	.0023	.0016	0005	0014
.599	1.04	.00	0026	.0054	.0024	.0027	0006	0008
.600	1.04	2.99	0019	.0053	.0027	.0037	0007	.0001
.599	1.04	6.00	.0002	.0056	.0008	.0062	.0000	0015
.600	1.05	8.99	.0023	.0061	0011	.0070	.0004	0016
.599	1.05	12.00	.0049	.0070	0038	.0097	.0016	0029
.600	1.05	15.99	.0148	.0108	0134	.0149	.0041	0051
.599	1.05	18.02	.0197	.0134	0175	.0175	.0062	0060
.599	3.53	-1.88	0036	.0053	.0027	.0011	0009	.0000
.601	3.51	.03	0027	.0052	.0023	.0022	0006	0003
.600	3.50	3.00	0016	.0053	.0022	.0034	0007	0003
.599	3.49	6.00	.0000	.0055	.0010	.0047	0005	0004
.601	3.49	9.00	.0022	.0059	0010	.0067	.0001	0015
.601	3.49	12.00	.0052	.0069	0043	.0087	.0009	0030
.603	3.50	16.00	.0154	.0108	0141	.0145	.0034	0066
.596	3.48	18.01	.0204	.0135	0185	.0187	.0060	0090
.600	1.05	20.02	.0213	.0163	0204	.0184	.0058	0048
.600	2.00	20.01	.0216	.0162	0207	.0174	.0035	0036
.600	3.00	20.00	.0220	.0164	0216	.0194	.0050	0088
.599	3.51	20.02	.0224	.0166	0220	.0199	.0048	0092
.599	5.03	20.00	.0229	.0168	0228	.0202	.0047	0102
.600	1.05	16.66	.0144	.0119	0146	.0120	.0019	0035
.599	1.05	18.00	.0169	.0134	0166	.0143	.0032	0044
.599	1.05	19.99	.0213	.0163	0206	.0161	.0049	0041
.601	1.03	23.98	.0345	.0259	0351	.0196	.0102	0052
.599	1.01	27.98	.0495	.0393	0556	.0229	.0173	0077
.599	.98	31.99	.0642	.0563	0805	.0223	.0240	0099
.602	3.48	16.82	.0154	.0121	0159	.0118	.0007	0056
.599	3.49	17.98	.0177	.0135	0177	.0151	.0023	0075
.599	3.49	19.99	.0224	.0166	0221	.0187	.0043	0090
.598	3.49	23.98	.0363	.0265	0377	.0226	.0094	0115
.598	3.50	27.97	.0520	.0406	0595	.0294	.0176	0194
.599	3.50	31.99	.0677	.0586	0861	.0314	.0252	0254

Table 12. Concluded

(b) Concluded

MACH	NPR	ALPHA	CLAFT	CDAFT	CMAFT	CLN	CDN	CMN
.152	1.00	.02	.0012	.0068	0043	.0193	.0185	0078
.150	2.02	.02	.0022	.0073	0056	.0159	0139	.0071
.150	2.61	.01	.0044	.0075	0082	.0263	0073	0054
.151	2.98	.01	.0033	.0076	0066	.0288	0020	0069
.151	3.86	.00	.0039	.0079	0063	.0294	.0019	0064
.149	1.00	-1.32	0031	.0058	.0030	.0413	.0175	0185
.151	1.00	.03	0010	.0053	.0011	.0410	.0120	0155
.151	1.00	3.03	0011	.0052	.0026	.0386	.0145	0133
.149	1.00	6.03	.0004	.0054	.0023	.0412	.0133	0150
.150	1.00	8.99	.0029	.0059	.0002	.0457	.0194	0164
.151	1.00	11.99	.0079	.0070	0060	.0429	.0204	0132
.150	1.00	16.02	.0161	.0106	0148	.0411	.0272	0133
.150	1.00	18.00	.0224	.0136	0218	.0468	.0312	0174
.151	2.60	-1.36	.0036	.0056	0052	.0214	0068	0006
.151	2.60	.03	.0036	.0058	0049	.0215	0085	.0004
.153	2.60	3.02	.0059	.0062	0068	.0214	0081	.0017
.152	2.60	6.04	.0086	.0068	0091	.0159	0054	.0053
.152	2.60	9.00	.0124	.0083	0133	.0210	0049	.0047
.152	2.60	11.99	.0128	.0091	0138	.0210	0049	.0037
.151	2.60	15.99	.0200	.0122	0219	.0300	0004	0036
.151	2.60	18.02	.0281	.0163	0318	.0280	.0018	0021
.153	1.00	20.00	.0198	.0149	0203	.0286	.0061	0070
.150	1.98	20.00	.0175	.0150	0176	.0311	0121	.0101
.149	2.59	19.98	.0201	.0163	0214	.0450	.0029	0222
.150	3.03	19.98	.0198	.0162	0219	.0500	.0072	0240
.150	3.81	19.99	.0200	.0166	0234	.0504	.0060	0211
.150	2.79	15.99	.0085	.0113	0111	.0114	0142	0083
.150	1.01	15.99	.0082	.0095	0097	.0017	.0012	.0005
.150	1.00	17.98	.0172	.0124	0199	.0028	0003	.0028
.151	1.00	19.98	.0189	.0140	0204	.0180	.0060	0057
.151	1.00	23.98	.0267	.0199	0278	.0273	.0141	0092
.151	1.00	27.99	.0383	.0304	0424	.0373	.0260	0158
.153	1.00	31.99	.0512	.0439	0608	.0414	.0355	0190
.152	1.00	35.10	.0560	.0527	0703	.0440	.0454	0241
.149	2.63	15.98	.0097	.0104	0107	.0411	.0018	0217
.149	2.60	17.98	.0165	.0129	0187	.0510	.0046	0253
.149	2.60	19.98	.0191	.0147	0214	.0494	.0078	0250
.152	2.60	23.99	.0266	.0209	0266	.0539	.0143	0286
.150	2.60	27.98	.0378	.0311	0408	.0562	.0200	0317
.153	2.61	31.98	.0500	.0448	0595	.0602	.0250	0363
.152	2.61	34.97	.0606	.0577	0770	.0597	.0318	0395

Table 13. Lateral Aerodynamic Characteristics for Dry Nozzle With 100/25 A/B Sidewalls and $\delta_{v,p}=0^\circ$

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	СЧ
1.200	.93	.01	.0000	.0006	0007	.0000	.0006	0007
1.200	2.96	.01	.0000	.0005	0009	.0000	.0005	0008
1.200	5.01	.02	.0002	.0019	0031	.0002	.0007	0012
1.202	7.06	.01	.0003	.0030	0047	.0003	.0006	0012
1.200	8.96	.02	.0004	.0041	0061	.0004	.0006	0009
1.201	.94	-2.01	.0000	.0005	0009	.0000	.0005	0009
1.202	.92	.01	.0001	.0006	0011	.0001	.0006	0011
1.202	.88	3.01	.0002	.0006	0013	.0002	.0006	0013
1.201	.84	6.00	.0001	.0003	0007	.0001	.0003	0007
1.200	.80	9.01	.0002	.0001	0007	.0002	.0001	0007
1.200	.77	11.99	.0001	0002	0006	.0001	0002	0006
1.202	.76	16.02	.0001	0001	0004	.0001	0001	0004
1.197	.76	18.00	.0001	0004	.0004	.0001	0004	.0004
1.202	7.03	-2.01	.0003	.0030	0047	.0003	.0006	0011
1.202	7.06	.01	.0004	.0032	0051	.0004	.0008	0015
1.201	7.00	3.03	.0004	.0032	0052	.0004	.0009	0017
1.200	6.99	5.99	.0004	.0033	0053	.0004	.0009	0018
1.200	6.98	9.01	.0005	.0033	0056	.0005	.0009	0021
1.201	6.99	12.00	.0004	.0030	0055	.0004	.0006	0020
1.203	7.01	15.99	.0005	.0029	0050	.0005	.0006	0015
1.199	6.98	17.98	.0005	.0027	0046	.0005	.0003	0011 0021
.899	1.10	03	.0002	.0008	0021	.0002	.0008	0021
.900	2.01	01	.0001	0003	0008	.0001	.0005	0018
.897	2.99	01	.0002	.0000	0014	.0002	.0000	0012
.896	4.97	.00	.0004	.0023	0048	.0004	.0003	0015
.902	7.01	.00	.0006	.0045	0078	.0006	.0003	0013
.899	1.11	-2.03	.0002	.0007	0021	.0002	.0007	0023
.900	1.10	.03	.0002	.0008	0023	.0002	.0008	0023
.903	1.10	3.03	.0002	.0008	0023 0020	.0002	.0005	0020
.901	1.10	6.00	.0002	.0005	0020	.0002	.0005	0017
.902	1.10	9.01	.0002	.0005	0017	.0002	.0006	0019
.901	1.10	11.99	.0002	.0003	0015	.0002	.0003	0015
.901	1.09	16.03	.0002	.0003	0013	.0002	.0001	0014
.900	1.06	18.00	.0002	.0023	0014	.0004	.0002	0016
.901	4.99	-2.02	.0004	.0023	0050	.0004	.0003	0018
.900	4.99	.00	.0004	.0024	0049	.0004	.0002	0017
.900	5.00	3.03	.0004	.0024	0052	.0004	.0003	0020
.903	5.01	6.01 8.99	.0004	.0024	0045	.0004	.0000	0012
.899	4.99		.0004	.0021	0045	.0004	.0000	0012
.900	4.99	12.01 16.03	.0004	.0022	0047	.0004	.0001	0015
.902	5.00		.0004	.0023	0048	.0004	.0002	0016
.898	4.99	11.77	.0004	.0023		-		

Table 13. Continued

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	СУ
.600	1.04	.00	.0001	.0004	0008	.0001	0007	0000
.601	1.98		0001	0019		0001	.0004	0008
.601	2.99	.01	.0001	0002	0005	.0001	.0001	.0000
.599	3.50	.01	.0002	.0011	0024	.0001	0002	.0000
.597	4.98	.00	.0005	.0048	0076	.0002	.0000	0003
.603	1.04	-1.90	.0003	.0009	0028	.0003	.0009	0003 0028
.599	1.04	.00	.0003	.0009	0026	.0003	.0009	0028
.600	1.04	2.99	.0003	.0009	0027	.0003	.0009	0026
.599	1.04	6.00	.0003	.0008	0026	.0003	.0009	0027
.600	1.05	8.99	.0003	.0008	0026	.0003	.0008	0026
.599	1.05	12.00	.0003	.0010	0031	.0003	.0010	0026
.600	1.05	15.99	.0003	.0006	0022	.0003	.0006	0022
.599	1.05	18.02	.0003	.0007	0025	.0003	.0007	0025
.599	3.53	-1.88	.0003	.0015	0044	.0003	.0003	0023
.601	3.51	.03	.0004	.0015	0042	.0004	.0003	0021
.600	3.50	3.00	.0003	.0014	0041	.0003	.0003	0019
.599	3.49	6.00	.0003	.0014	0039	.0003	.0002	0018
.601	3.49	9.00	.0003	.0013	0036	.0003	.0001	0015
.601	3.49	12.00	.0003	.0014	0042	.0003	.0003	0020
.603	3.50	16.00	.0004	.0015	0043	.0004	.0003	0021
.596 .600	3.48	18.01	.0004	.0016	0046	.0004	.0004	0025
.600	1.05	20.02	.0000	.0008	0022	.0000	.0008	0022
.600	2.00	20.01		0012	0002	0002	.0007	0025
.599	3.00 3.51	20.00	.0000	.0004	0025	.0000	.0004	0020
.599		20.02	.0002	.0016	0043	.0002	.0004	0021
.600	5.03 1.05	20.00	.0005	.0052	0093	.0005	.0004	0019
.599	1.05	16.66 18.00	.0000	.0003	0010	.0000	.0003	0010
.599	1.05	19.99	.0000	.0004	0013	.0000	.0004	0013
.601	1.03	23.98	.0001	.0009	0026	.0001	.0009	0026
.599	1.03	27.98	.0010	.0073	0174	.0010	.0073	0174
.599	.98	31.99	.0016 .0014	.0126	0272	.0016	.0126	0272
.602	3.48	16.82	.0014	.0124	0258	.0014	.0124	0258
.599	3.49	17.98	.0001	.0010	0024	.0001	0002	0004
.599	3.49	19.99	.0001	.0012	0032	.0001	.0000	0010
.598	3.49	23.98	.0002	.0017	0044	.0002	.0005	0023
.598	3.50	27.97	.0012	.0087	0205	.0012	.0075	0184
.599	3.50	31.99	.0019		0303	.0019	.0129	0281
	J.J.	JI . 77	.001/	.0144	0299	.0017	.0132	0278

Table 13. Concluded

MACH	NPR	ALPHA	CROLLT	CNT	CYT	CROLL	CN	CA
.152	1.00	.02	.0045	.0073	0305	.0045	.0073	0305
.150	2.02	.02	.0009	0266	.0105	.0009	.0043	0265
.150	2.61	.01	.0023	0096	0157	.0023	.0051	0301
.151	2.98	.01	.0030	.0031	0301	.0030	.0037	0241
.151	3.86	.00	.0056	.0371	0793	.0056	.0047	0257
.149	1.00	-1.32	.0028	.0045	0188	.0028	.0045	0188
.151	1.00	.03	.0026	.0047	0200	.0026	.0047	0200
.151	1.00	3.03	.0026	.0042	0167	.0026	.0042	0167
.149	1.00	6.03	.0024	.0043	0170	.0024	.0043	0170
.150	1.00	8.99	.0024	.0042	0168	.0024	.0042	0168
.151	1.00	11.99	.0020	.0036	0132	.0020	.0036	0132
.150	1.00	16.02	.0023	.0034	0147	.0023	.0034	0147
.150	1.00	18.00	.0018	.0030	0113	.0018	.0030	0113
.151	2.60	-1.36	.0002	0143	.0012	.0002	.0006	0135
.151	2.60	.03	.0000	0144	.0013	.0000	.0005	0134
.153	2.60	3.02	0003	0144	.0030	0003	.0002	0114
.152	2.60	6.04	0004	0146	.0046	0004	.0000	0099
.152	2.60	9.00	0006	0150	.0063	0006	0004	0081
.152	2.60	11.99	0004	0152	.0064	0004	0006	0081
.151	2.60	15.99	0003	0149	.0048	0003	0002	0097
.151	2.60	18.02	0008	0150	.0051	0008	0001	0095
.153	1.00	20.00	0008	.0001	.0002	0008	.0001	.0002
.150	1.98	20.00	0036	0331	.0349	0036	0011	0036
.149	2.59	19.98	0020	0169	.0110	0020	0014	0045
.150	3.03	19.98	0006	0013	0100	0006	0025	0014
.150	3.81	19.99	.0009	.0273	0486	.0009	0035	.0028
.150	2.79	15.99	.0009	0107	.0035	.0009	0028	0011
.150	1.01	15.99	.0017	.0007	0026	.0017	.0007	0026
.150	1.00	17.98	.0018	.0012	0043	.0018	.0012	0043
.151	1.00	19.98	.0017	.0007	0025	.0017	.0007	0025
.151	1.00	23.98	.0015	.0006	0023	.0015	.0006	0023
.151	1.00	27.99	.0022	.0019	0046	.0022	.0019	0046
.153	1.00	31.99	.0010	0029	.0073	.0010	0029	.0073
.152	1.00	35.10	.0014	0029	.0059	.0014	0029	.0059
.149	2.63	15.98	.0008	0152	.0059	.0008	0009	0078
.149	2.60	17.98	.0005	0163	.0082	.0005	0011	0069
.149	2.60	19.98	.0005	0161	.0081	.0005	0008	0070
.152	2.60	23.99	.0007	0154	.0048	.0007	0007	0097
.150	2.60	27.98	.0007	0145	.0044	.0007	.0006	0105
.153	2.61	31.98	.0000	0186	.0159	.0000	0043	.0019
.152	2.61	34.97	0003	0208	.0217	0003	0064	.0075

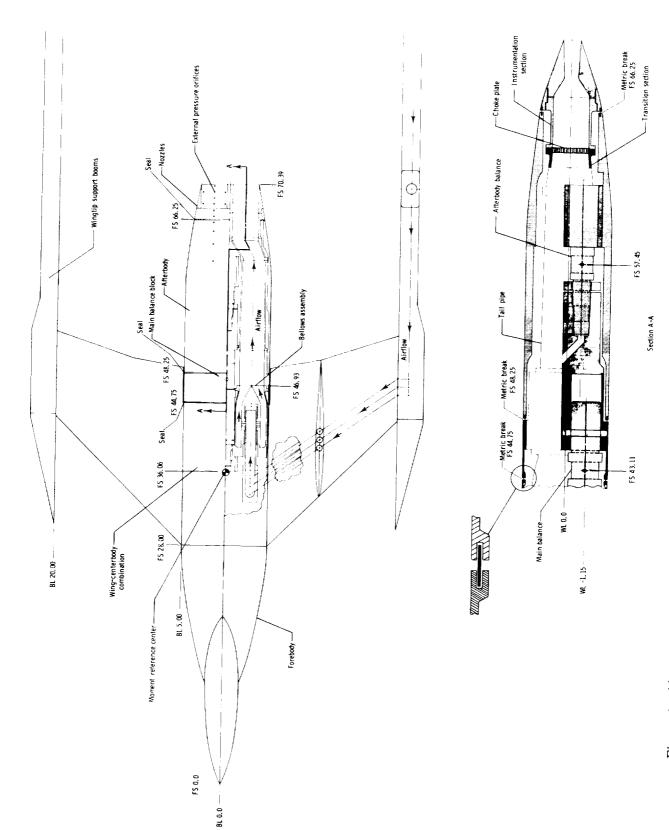


Figure 1. Air-powered, twin-engine, wingtip-supported model with dry power nozzle showing jet simulation system and balance arrangement. All linear dimensions are in inches.

ORIGINAL PAGE COLOR PHOTOGRAPH

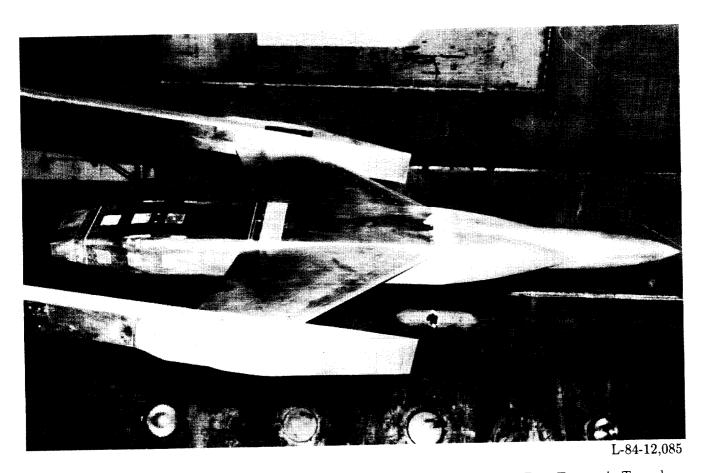


Figure 2. Model with afterburner power nozzles installed in the Langley 16-Foot Transonic Tunnel.

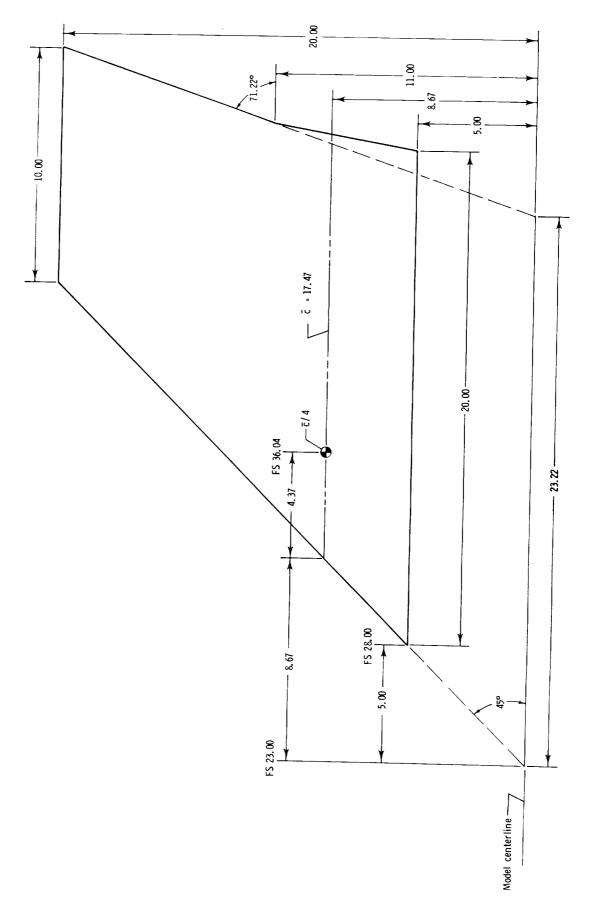


Figure 3. Wing planform geometry. All linear dimensions are in inches.

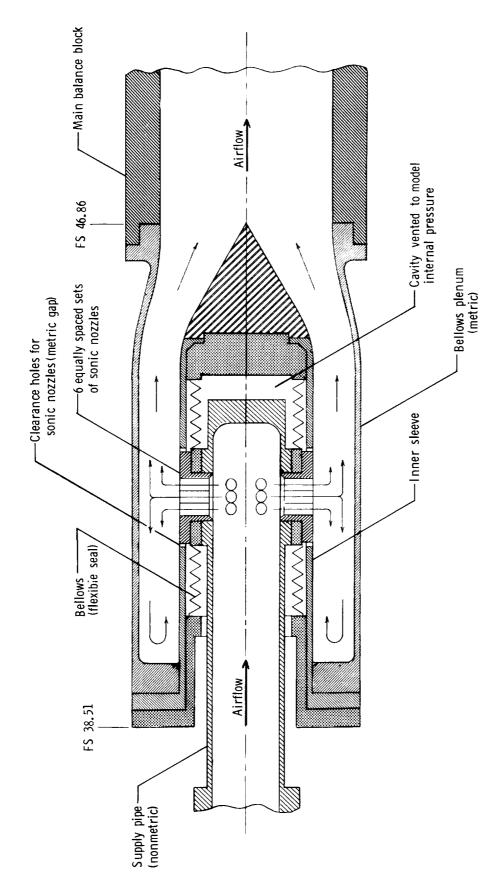
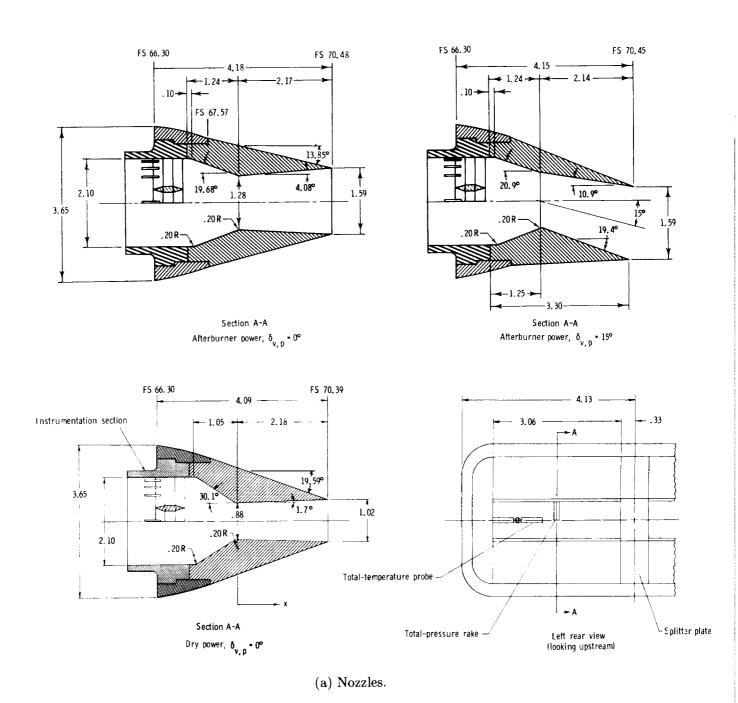
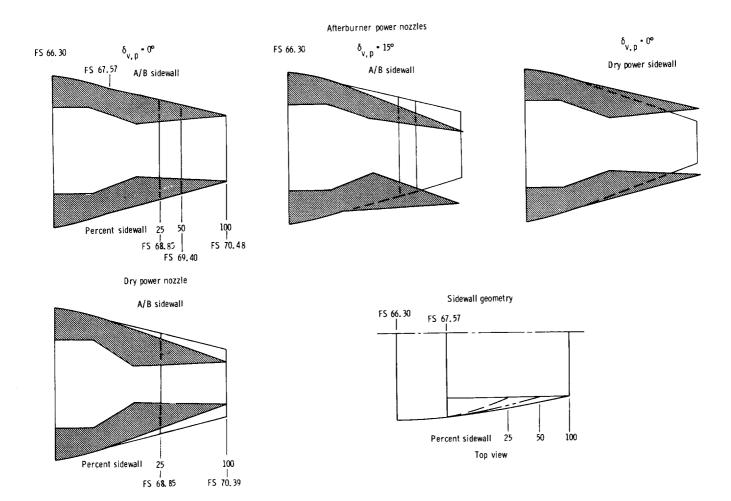
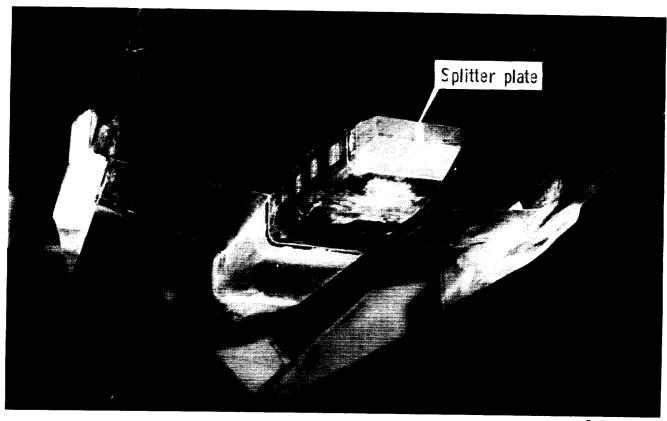


Figure 4. Schematic of bellows used to transfer air from nonmetric to metric portion of the model.

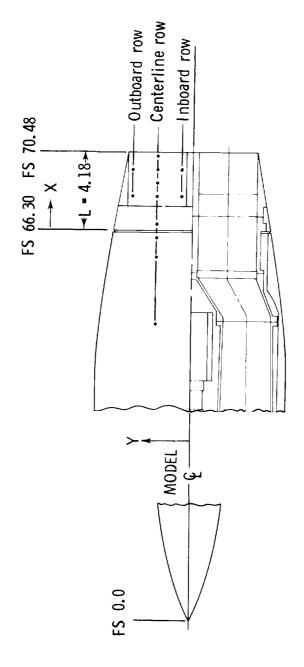




Figure 5. Nozzle geometric characteristics. All linear dimensions in inches.

(b) Sidewall configurations.

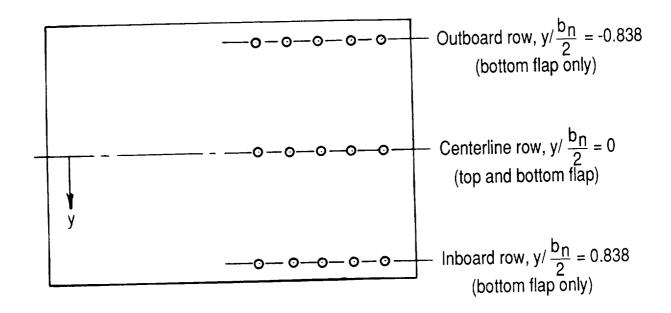
Figure 5. Continued.

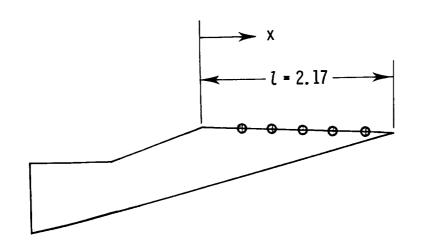
grafigrapation del concer reco


L-84-12,084

(c) Afterburner power nozzle with 100-percent sidewalls and $\delta_{v,p}=0^{\circ}.$

Figure 5. Concluded.


ORIGINAL PAGE COLOR PHOTOGRAPH


۱ <u>۲/ م</u>	. 838
X/L	-1. 165 323 087 081 435 603 772 940 435 772

(a) External afterbody nozzle.

Figure 6. Static pressure orifice locations for A/B nozzle.

Х	x/l
0.36	0.167
.72	. 334
1.09	.501
1.45	.667
1.81	. 835

(b) Internal nozzle.

Figure 6. Concluded.

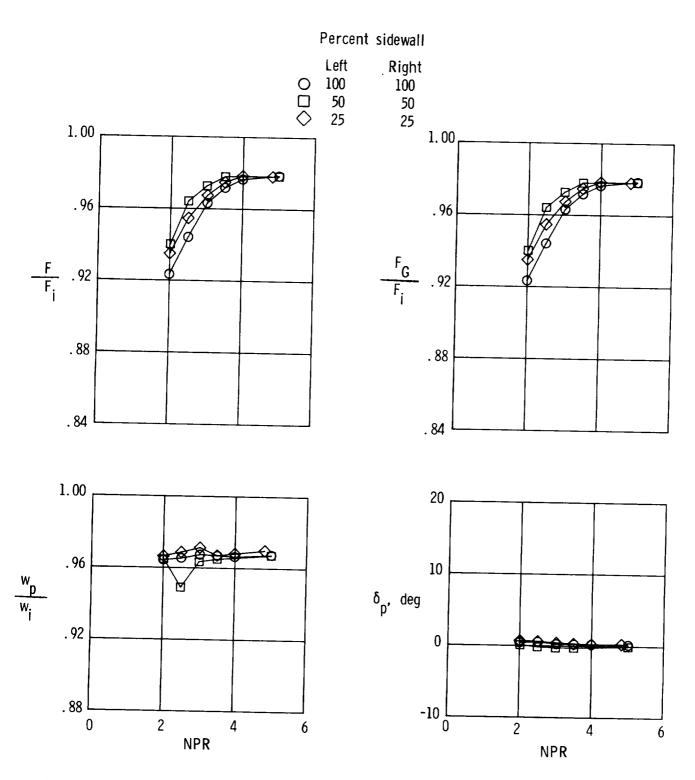


Figure 7. Effect of cutback sidewalls on A/B nozzle static performance with $\alpha=0^{\circ}$ and $\delta_{v,p}=0^{\circ}$.

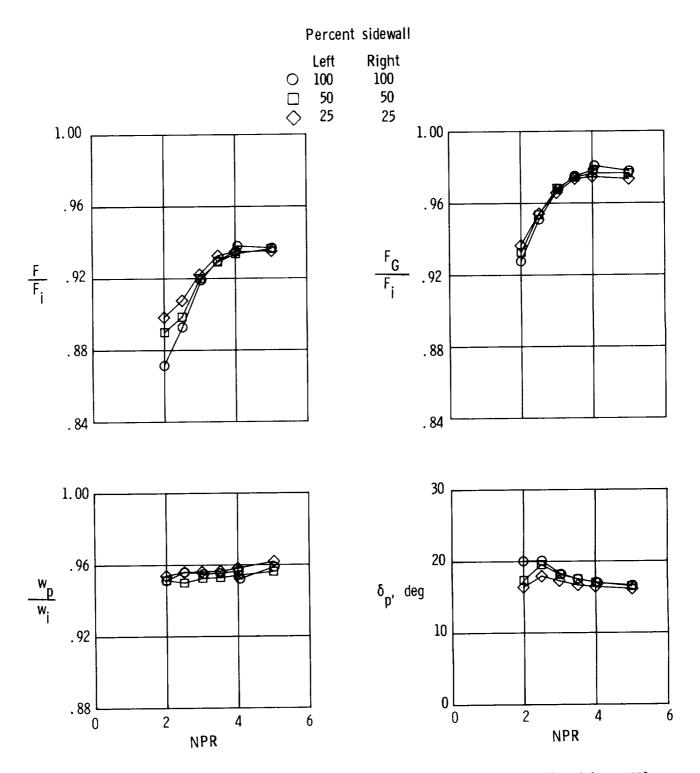


Figure 8. Effect of cutback sidewalls on A/B nozzle static performance with $\alpha=0^{\circ}$ and $\delta_{v,p}=15^{\circ}$.

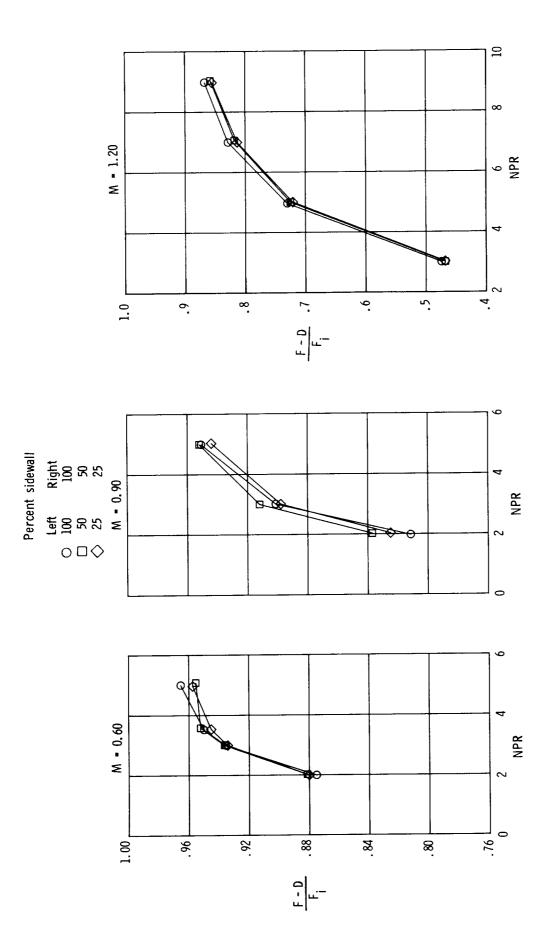
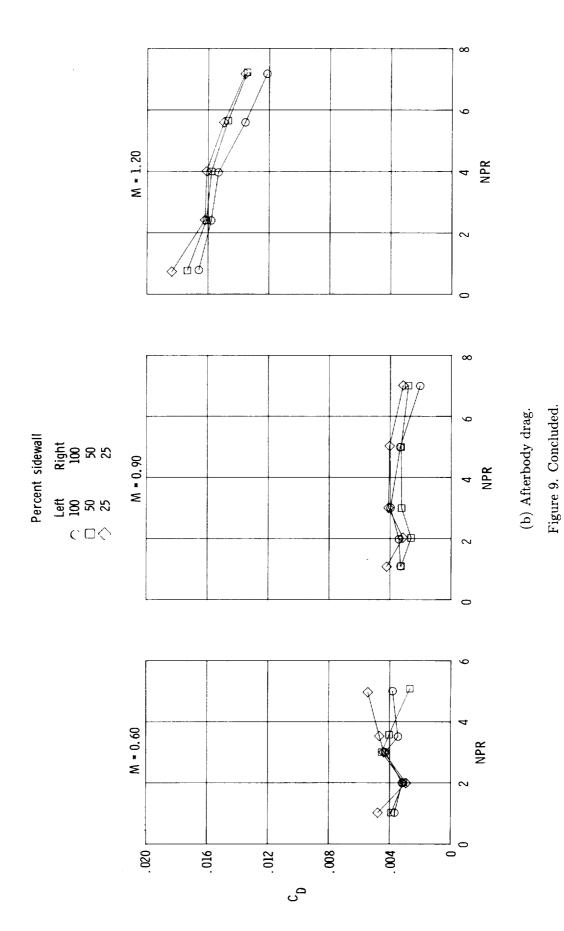



Figure 9. Effect of cutback sidewalls on afterbody aeropropulsive performance with $\delta_{v,p}=0^{\circ}$ and $\alpha=0^{\circ}$.

(a) Thrust-minus-drag performance.

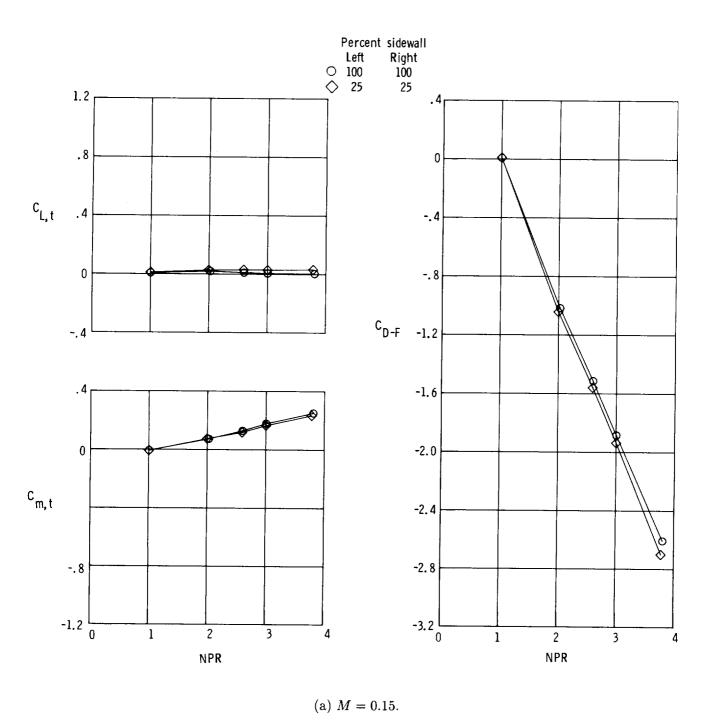


Figure 10. Effect of cutback sidewalls on total lift coefficient, drag coefficient, and pitching-moment coefficient (including thrust) with $\alpha=0^{\circ}$ and $\delta_{v,p}=0^{\circ}$.

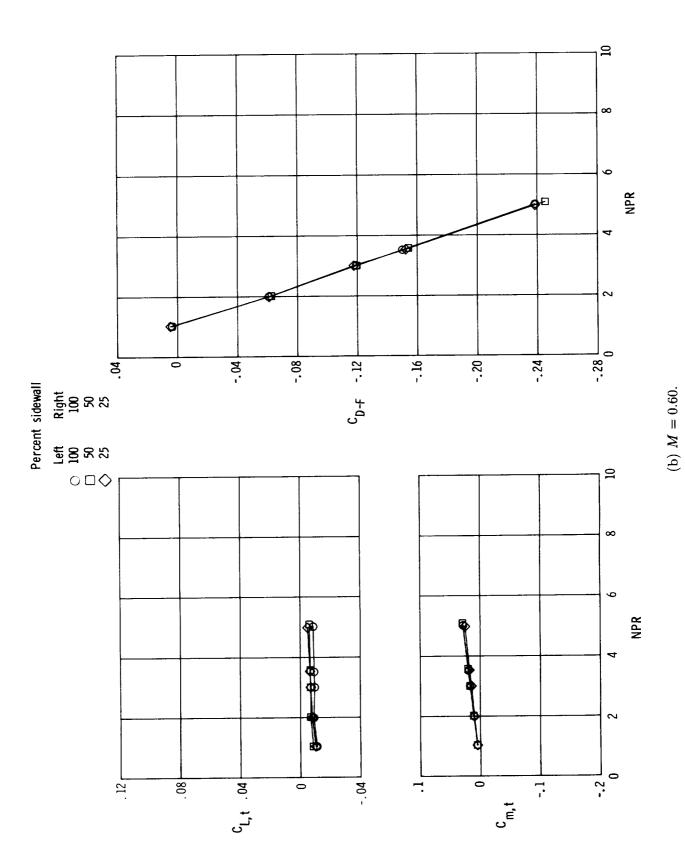


Figure 10. Continued.

72

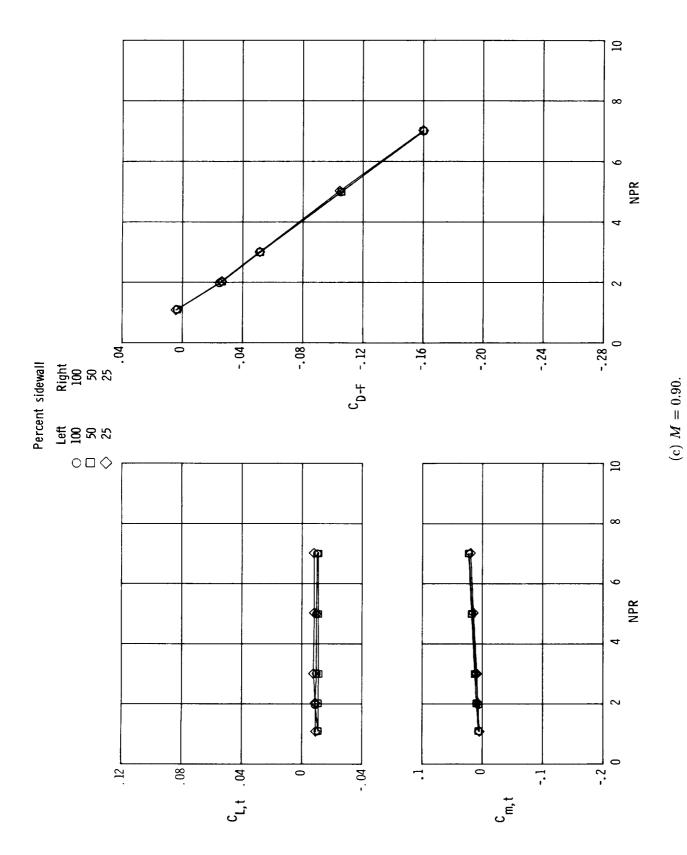
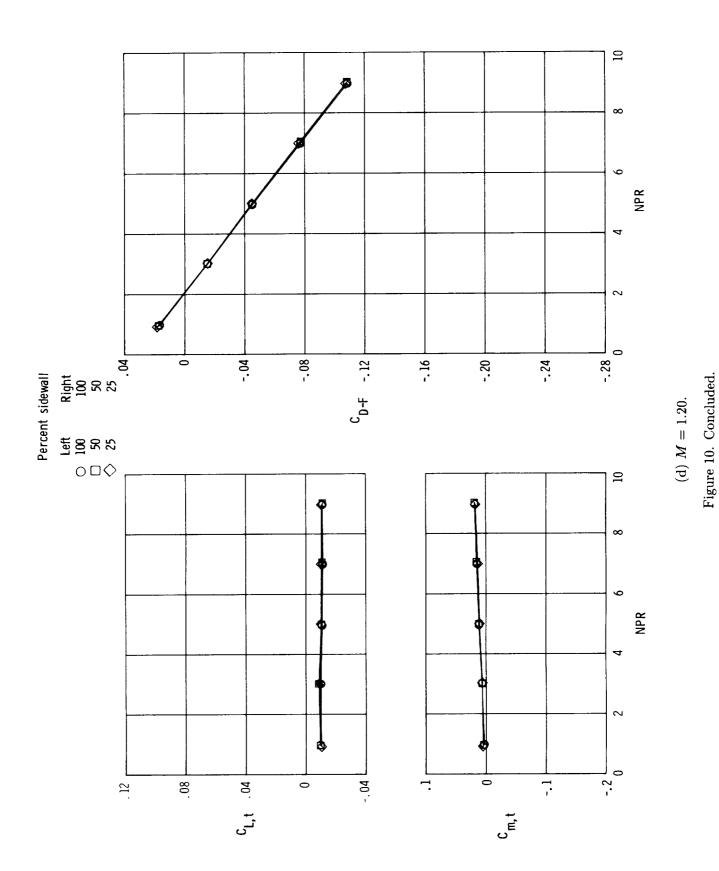



Figure 10. Continued.

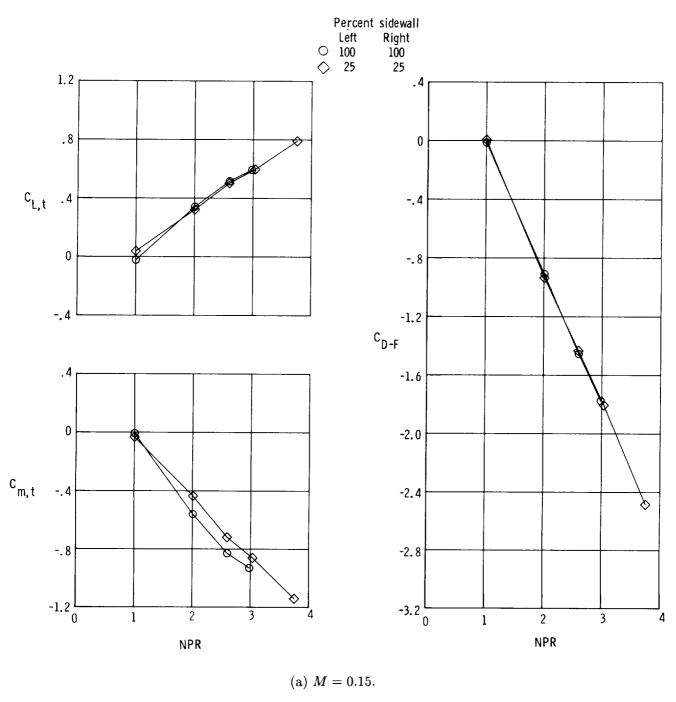


Figure 11. Effect of cutback sidewalls on total lift coefficient, drag coefficient, and pitching-moment coefficient (including thrust) with $\alpha=0^{\circ}$ and $\delta_{v,p}=15^{\circ}$.

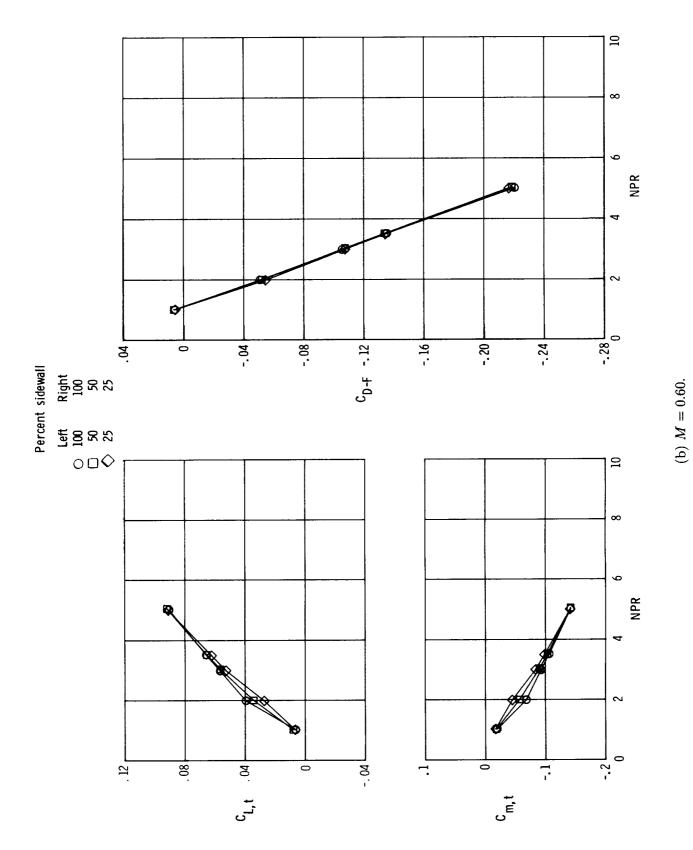
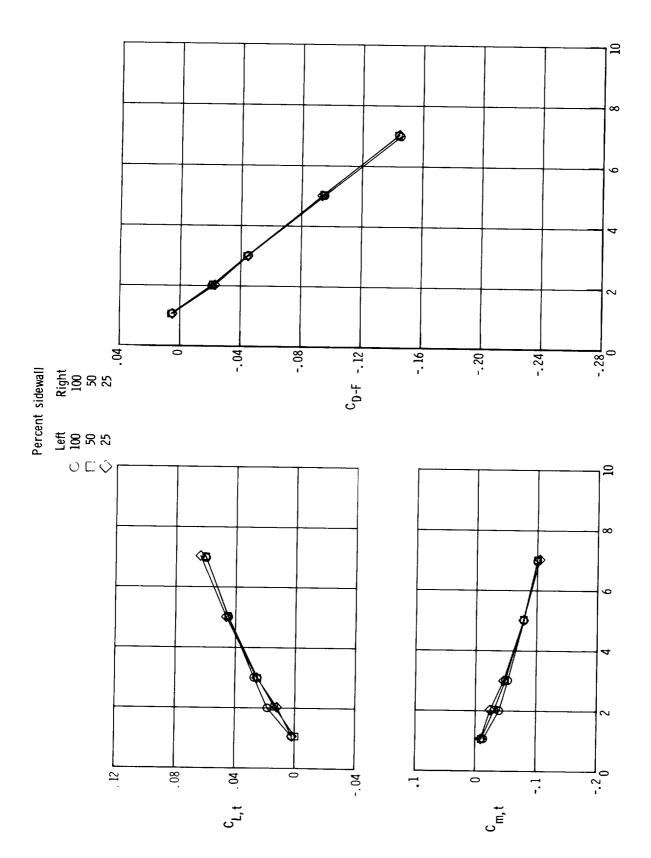



Figure 11. Continued.

(c) M = 0.90. Figure 11. Continued.

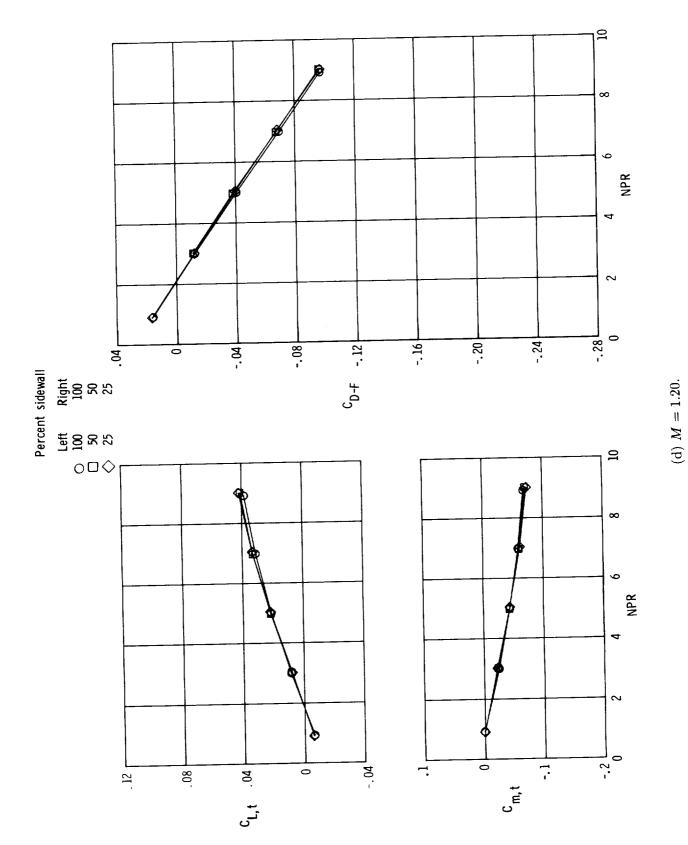


Figure 11. Concluded.

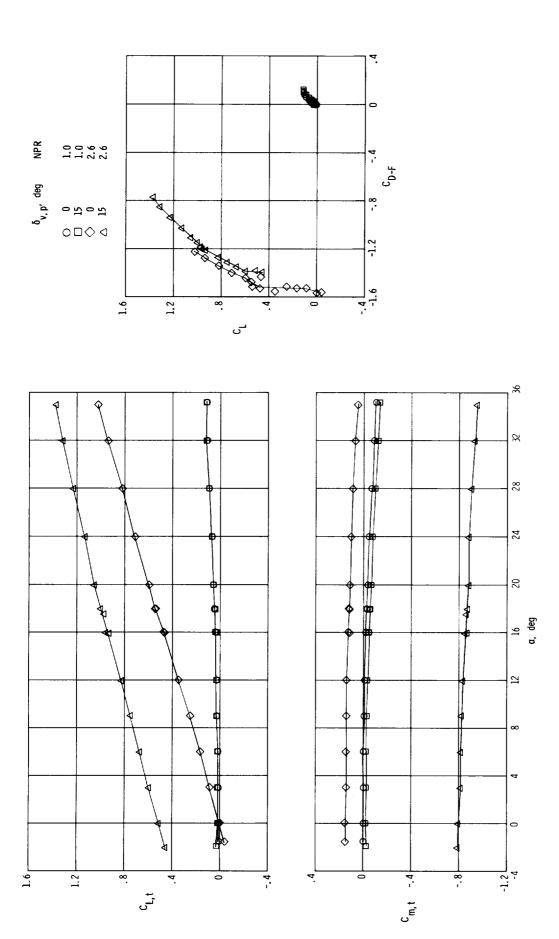


Figure 12. Effect of pitch vectoring on total aerodynamic coefficients (including thrust) at constant NPR settings with 100-percent sidewalls.

(a) M = 0.15.

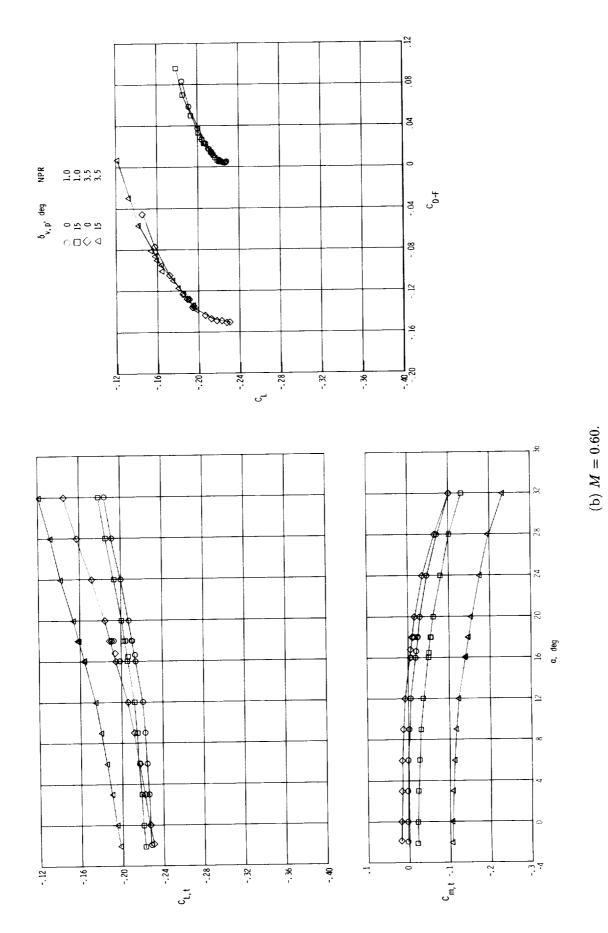


Figure 12. Continued.

80

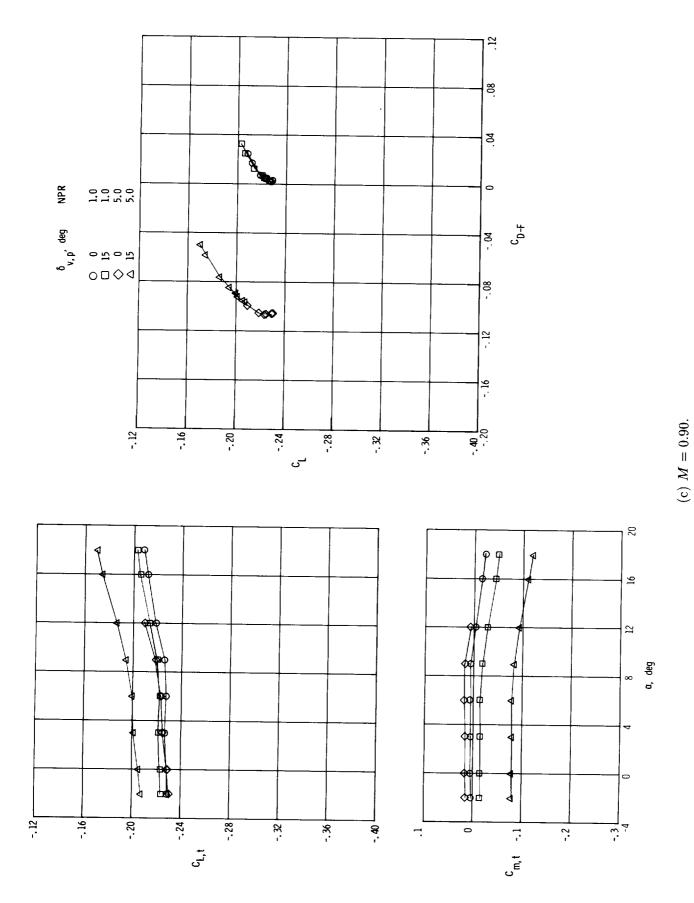
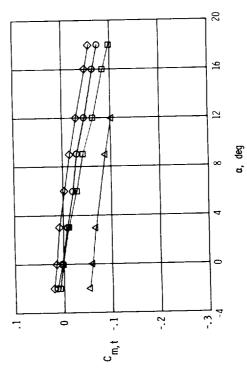
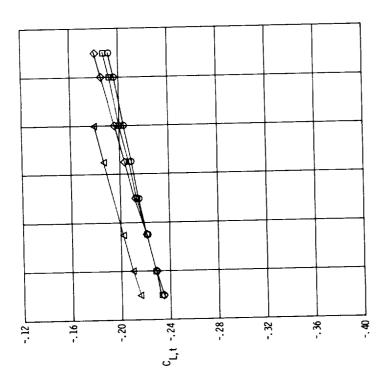




Figure 12. Continued.

(d) M = 1.20.

Figure 12. Concluded.

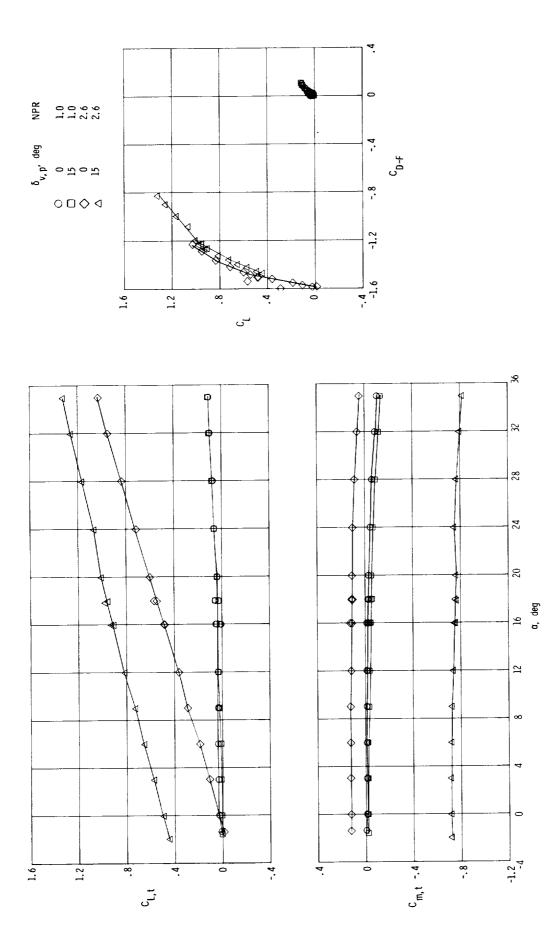


Figure 13. Effect of pitch vectoring on total aerodynamic coefficients (including thrust) at constant NPR settings with 25-percent sidewalls.

(a) M = 0.15.

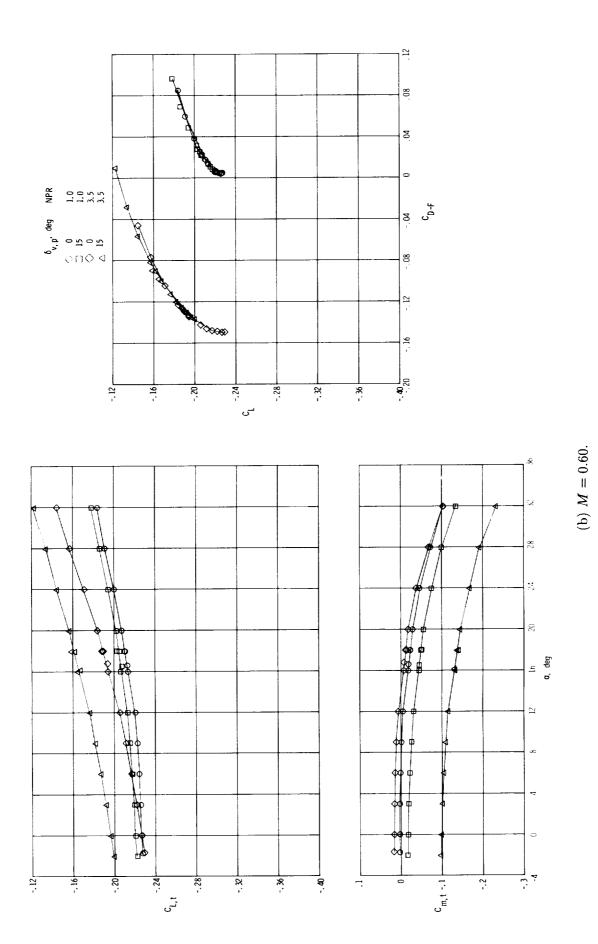
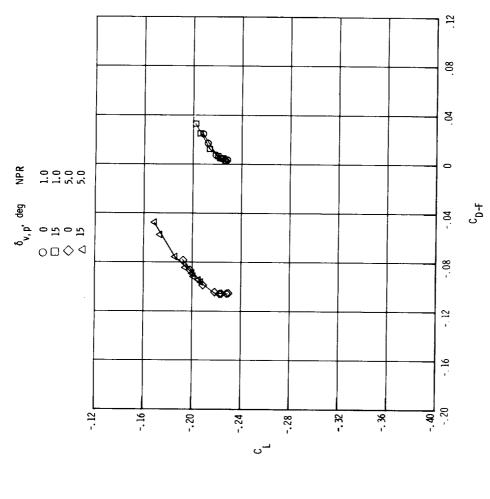
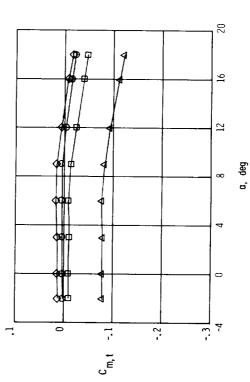



Figure 13. Continued.

84

- 16

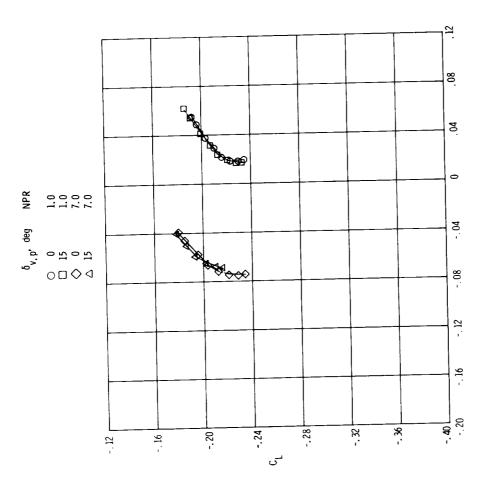
-.20

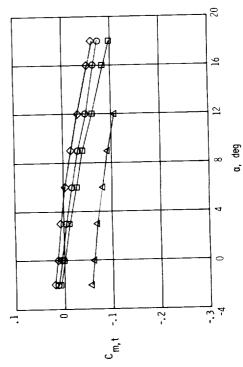

-.24

-.28

·-8:

-.32


-. <u>4</u>0



(c) M = 0.90.

Figure 13. Continued.

85

-.12 -.24 -.32 -.32

(d) M = 1.20.

Figure 13. Concluded.

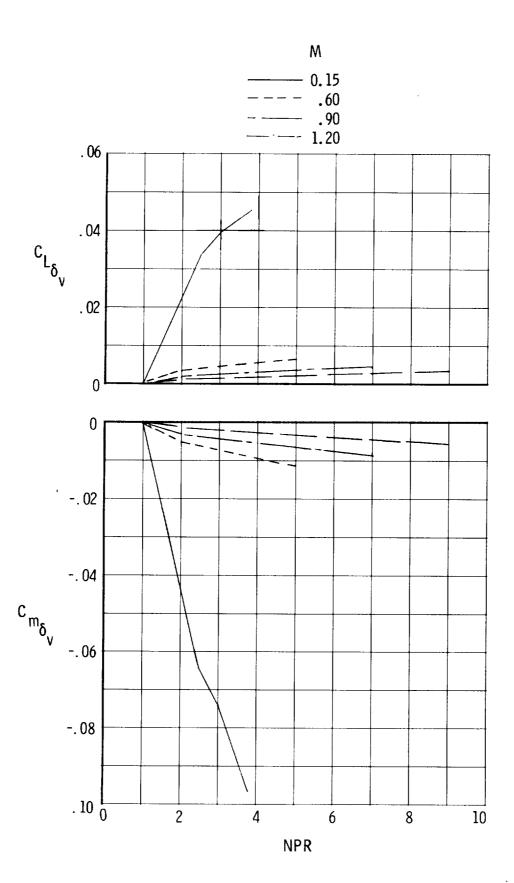


Figure 14. Effect of nozzle pressure ratio on longitudinal control power and lift effectiveness due to pitch vectoring with $\alpha = 0^{\circ}$.

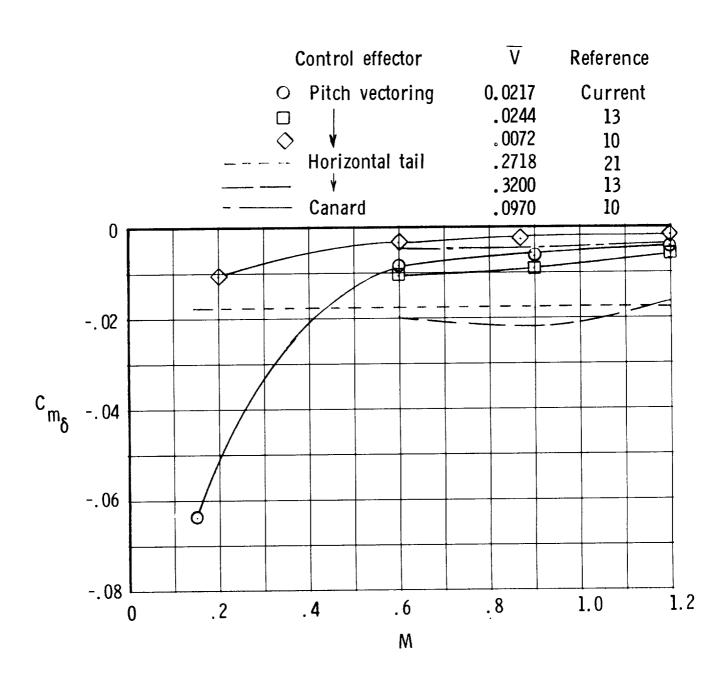


Figure 15. Comparison of longitudinal control power from powered and aerodynamic control effectors with $\alpha=0^{\circ}$.

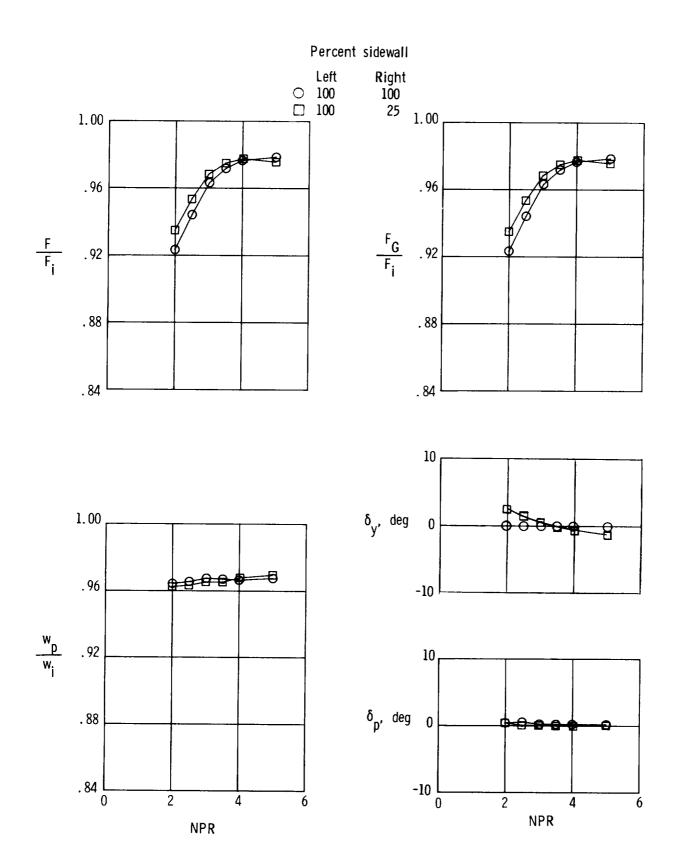


Figure 16. Effect of yaw vectoring by cutback sidewalls on nozzle static performance with $\alpha=0^{\circ}$ and $\delta_{v,p}=0^{\circ}$.

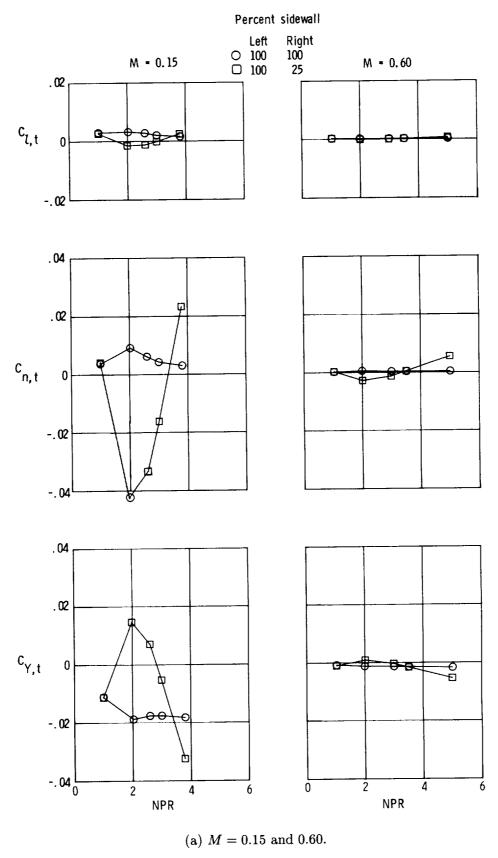
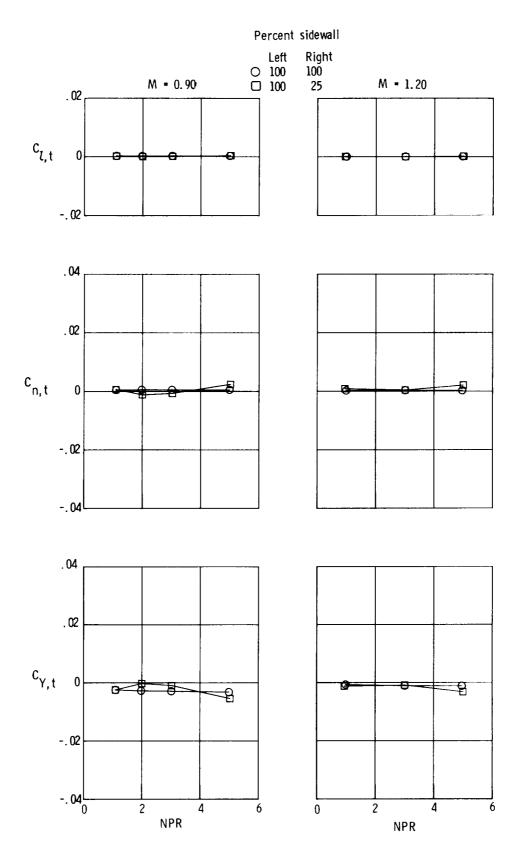



Figure 17. Effect of yaw vectoring by cutback sidewalls on total afterbody lateral coefficients (including thrust) for A/B power nozzle with $\alpha=0^{\circ}$ and $\delta_{v,p}=0^{\circ}$.

(b) M = 0.90 and 1.20.

Figure 17. Concluded.

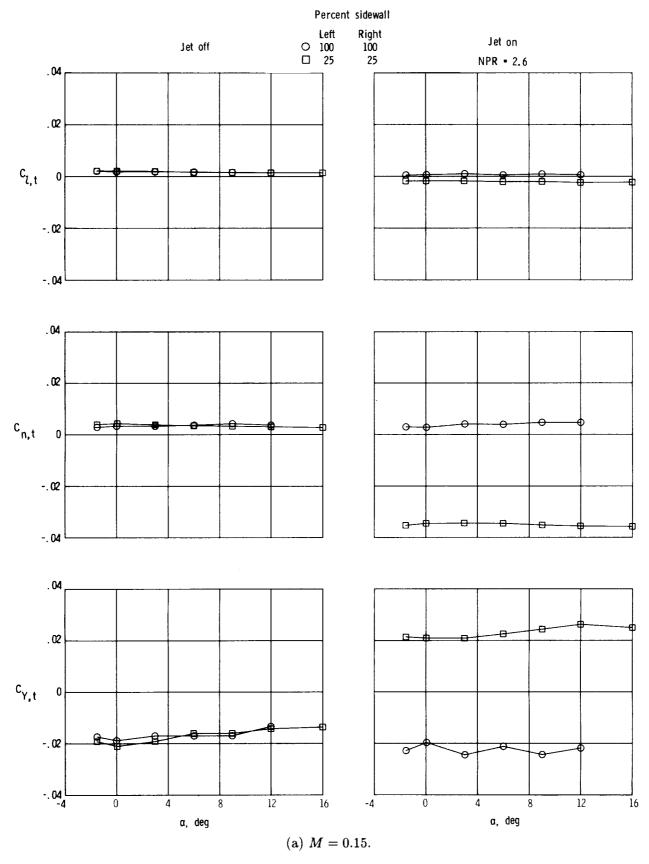


Figure 18. Effect of yaw vectoring by cutback sidewalls on total lateral aerodynamic coefficients (including thrust) at constant NPR settings with $\delta_{v,p} = 0^{\circ}$.

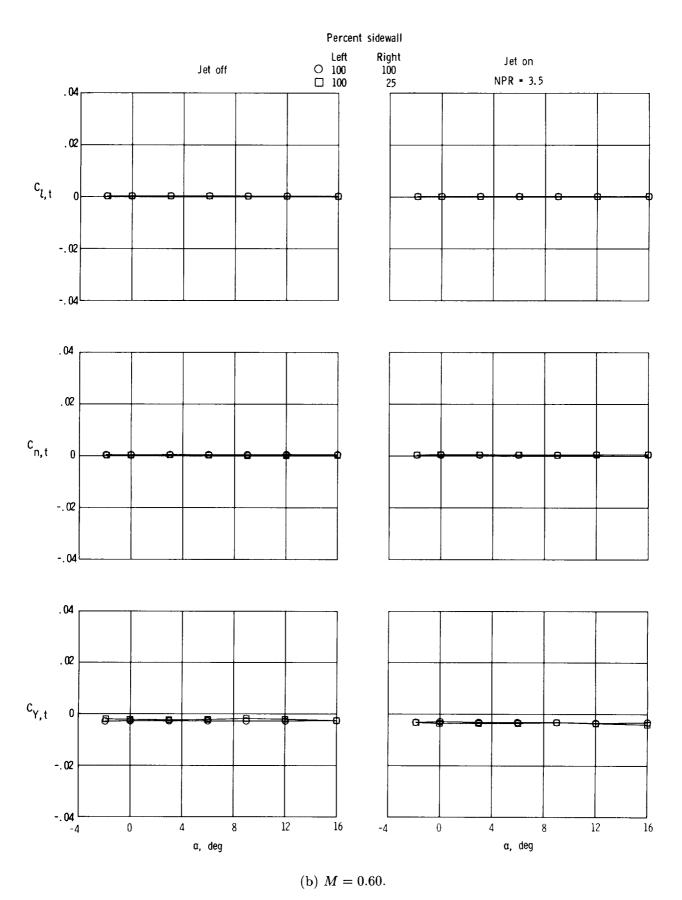


Figure 18. Continued.

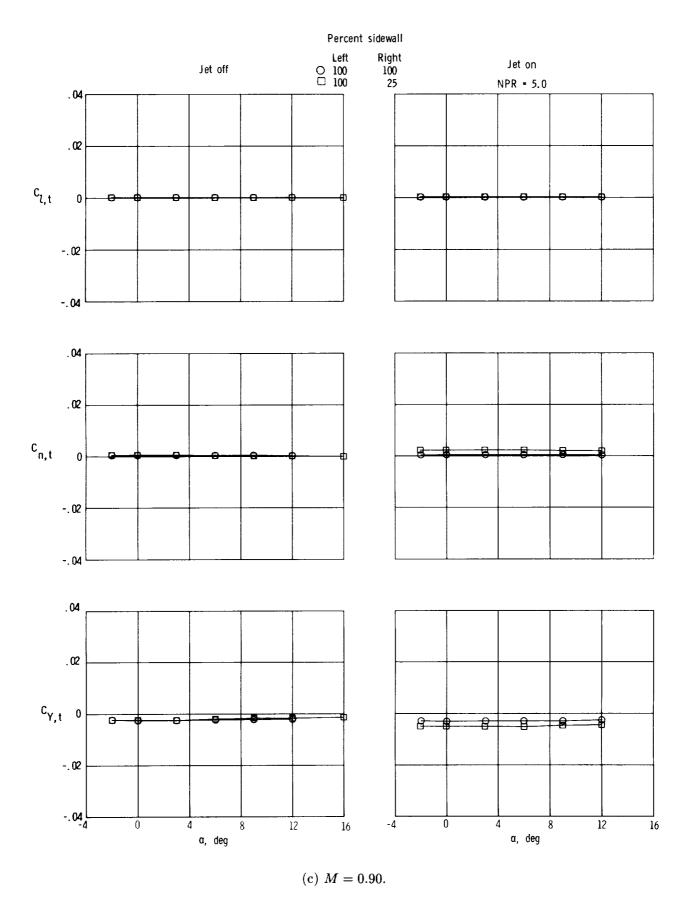
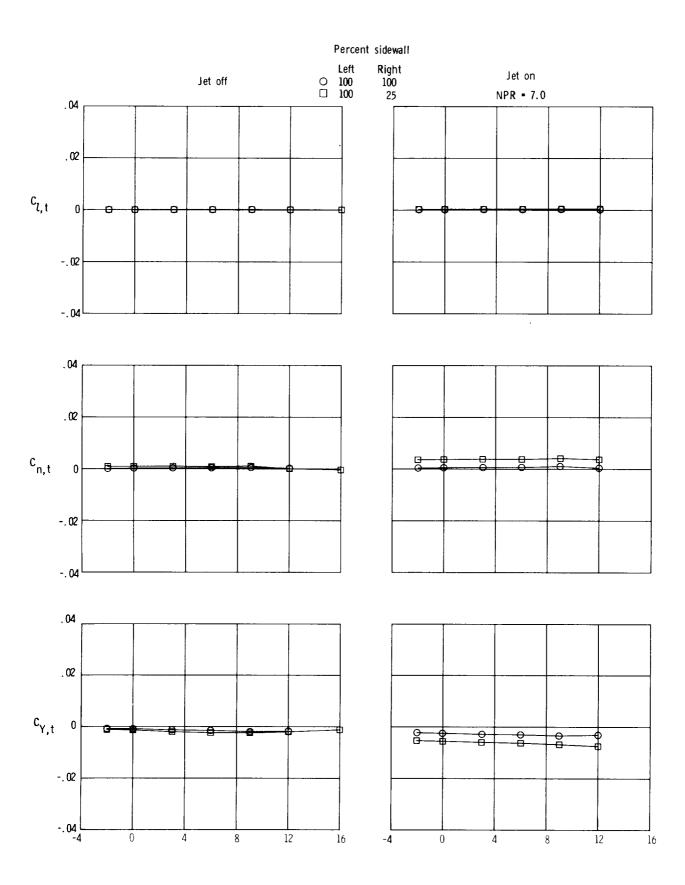



Figure 18. Continued.

(d) M = 1.20.

Figure 18. Concluded.

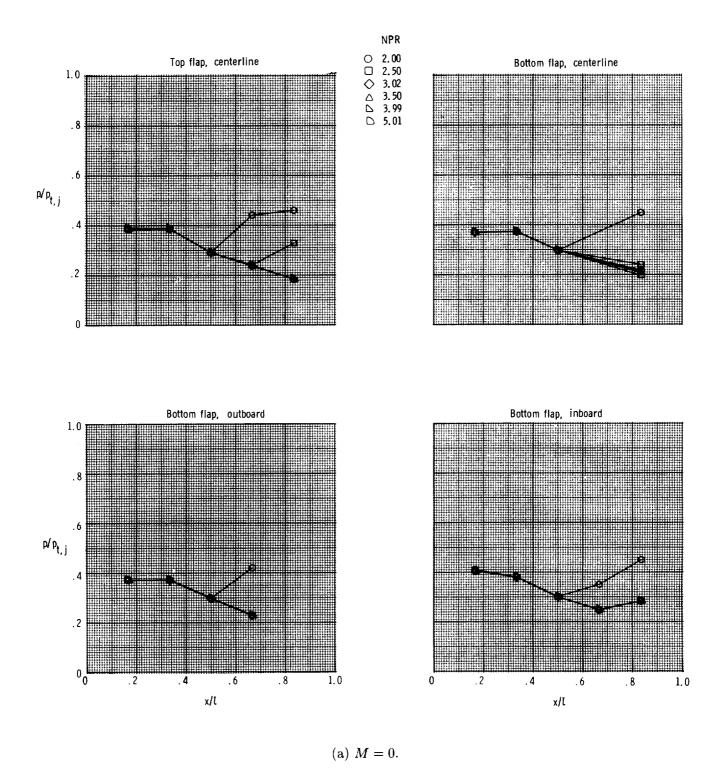
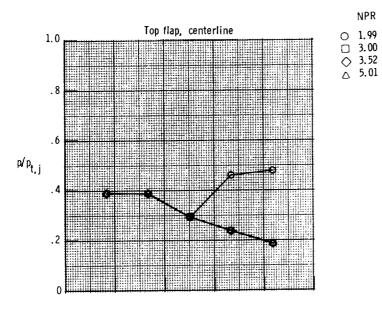
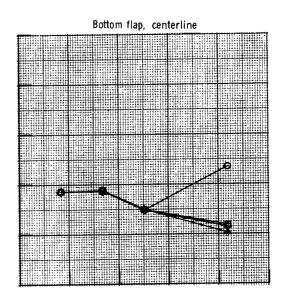
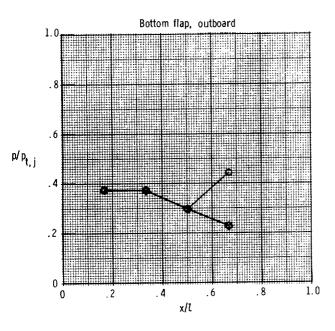
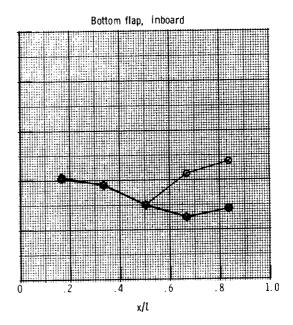
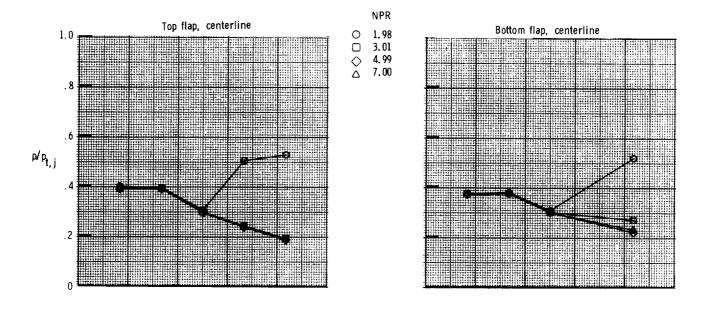






Figure 19. Effect of NPR on internal static pressure distributions for A/B power nozzle with 100-percent sidewalls, $\delta_{v,p}=0^{\circ}$, and $\alpha=0^{\circ}$.



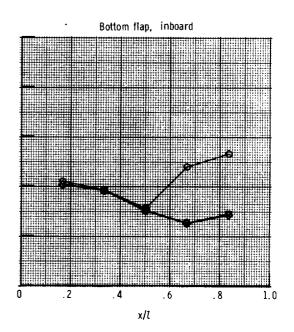
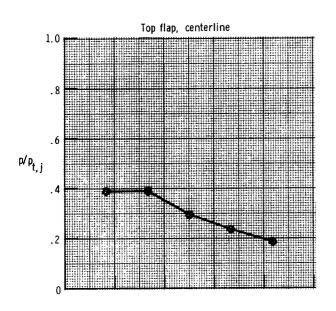
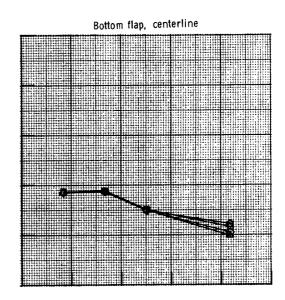
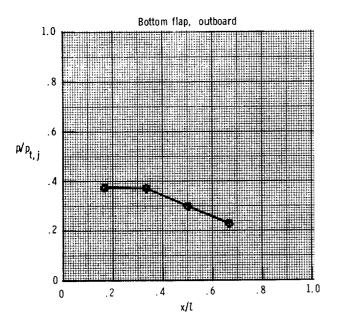

(b) M = 0.60.

Figure 19. Continued.

NPR







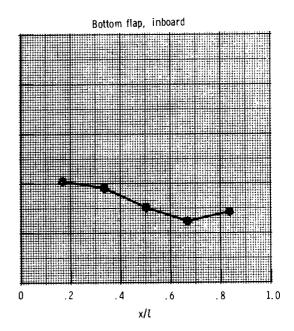

(c) M = 0.90.

Figure 19. Continued.

(d) M = 1.20.

NPR

. ○ 3.01 □ 4.96 ◇ 6.99 △ 8.97

Figure 19. Concluded.

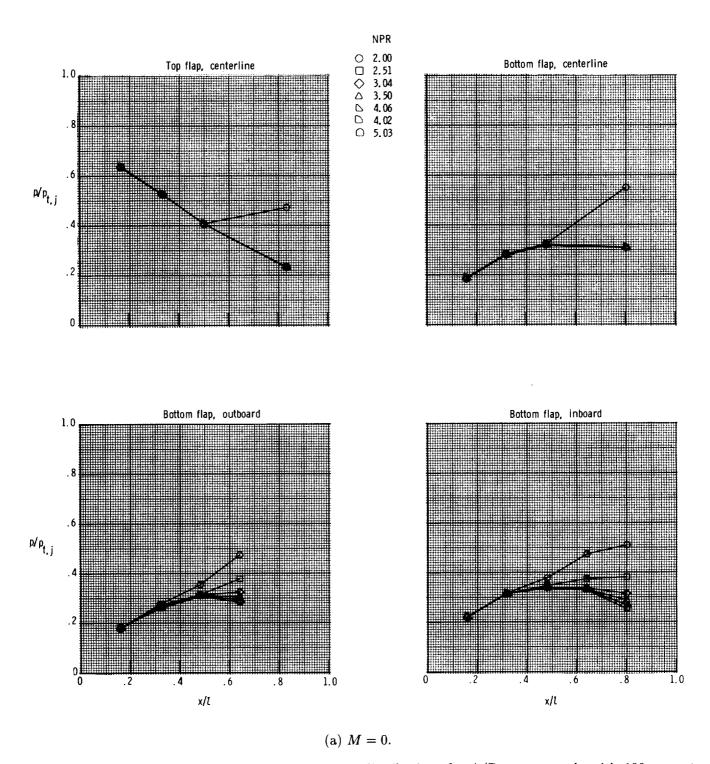
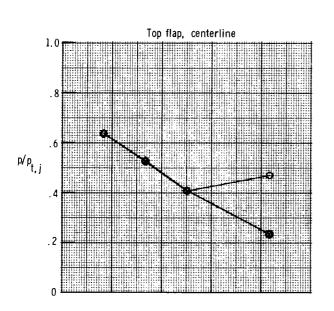
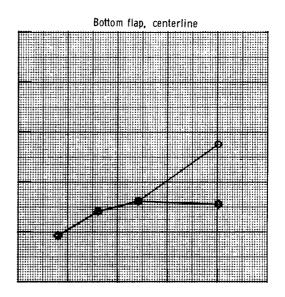
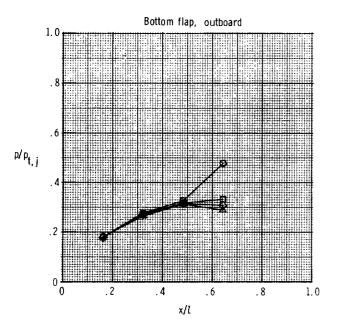
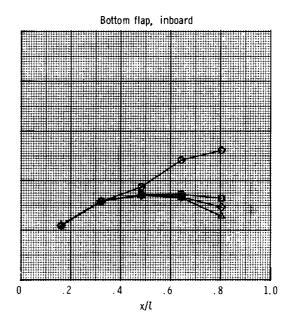






Figure 20. Effect of NPR on internal static pressure distributions for A/B power nozzle with 100-percent sidewalls, $\delta_{v,p}=15^{\circ}$, and $\alpha=0^{\circ}$.

(b) M = 0.60.

NPR

○ 1.99 □ 2.99 ○ 3.52 △ 5.02

Figure 20. Continued.

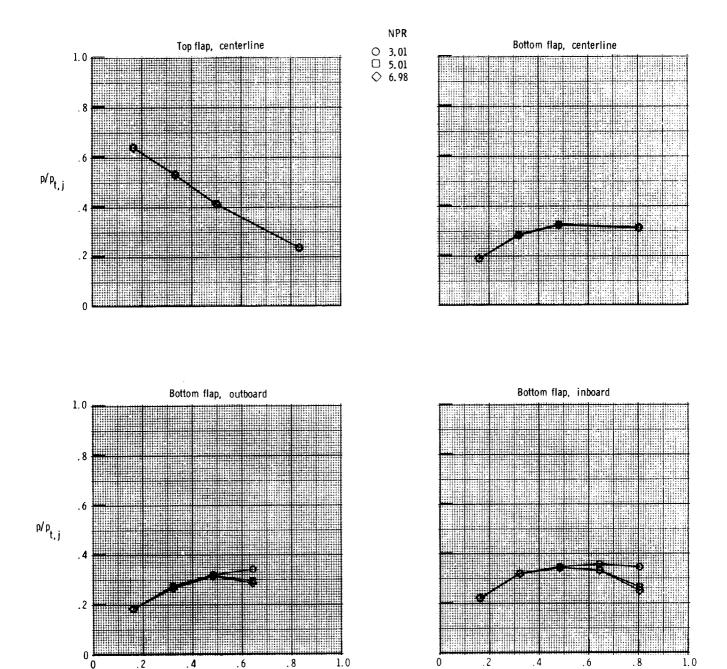


Figure 20. Continued.

(c) M = 0.90.

x/l

x/l

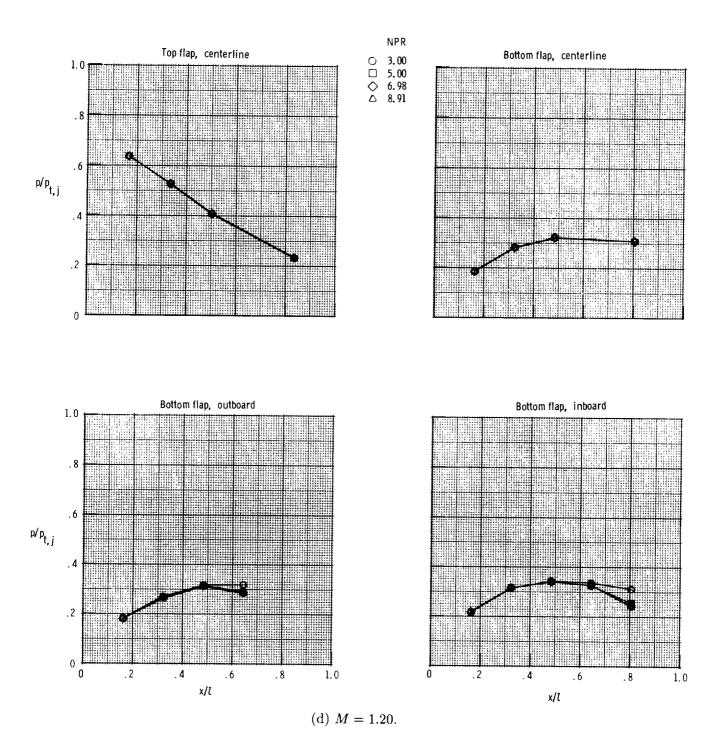


Figure 20. Concluded.

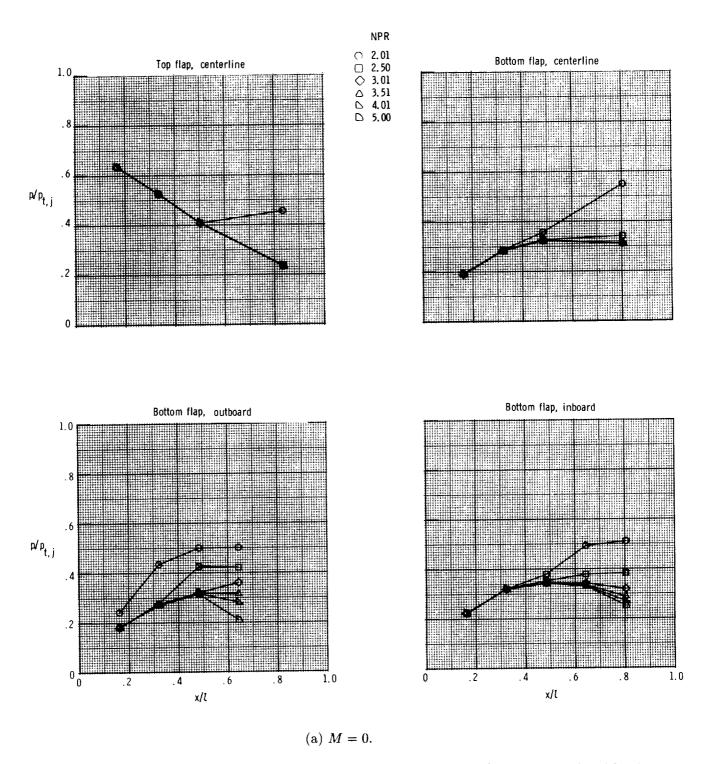
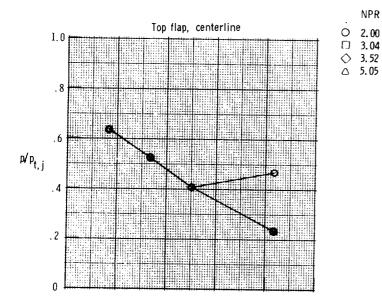
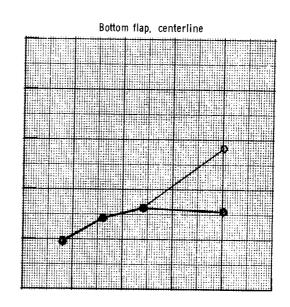
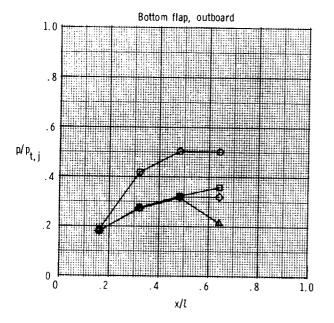
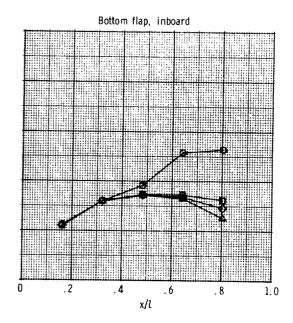






Figure 21. Effect of NPR on internal static pressure distributions for A/B power nozzle with 50-percent sidewalls, $\delta_{v,p}=15^{\circ}$, and $\alpha=0^{\circ}$.

(b) M = 0.60.

NPR

Figure 21. Continued.

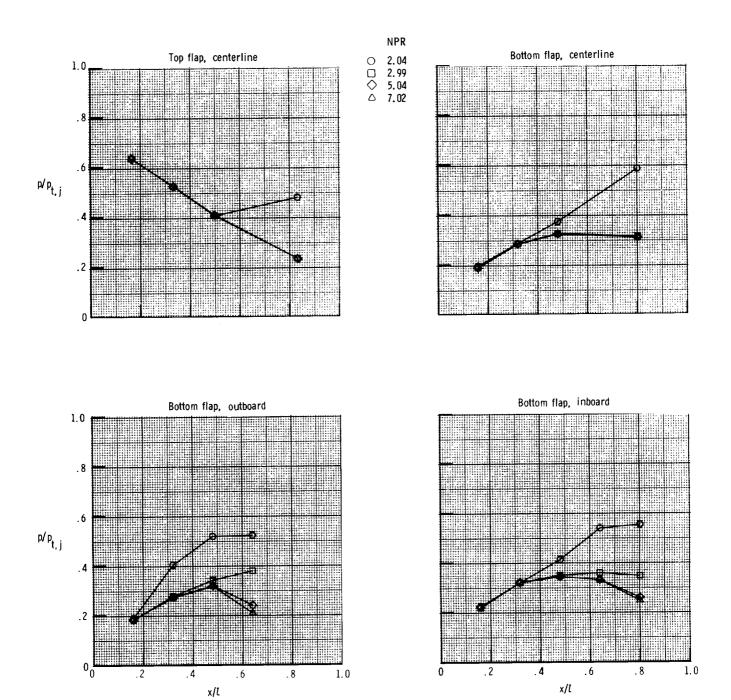
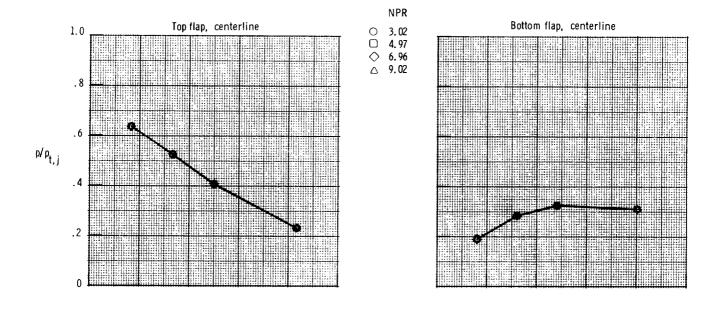
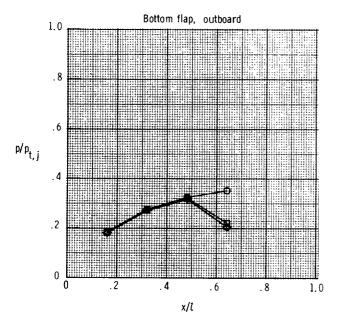
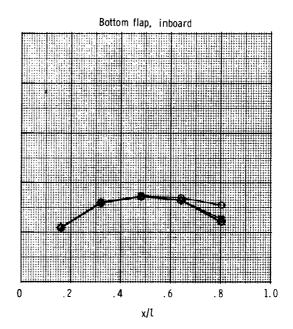





Figure 21. Continued.

(c) M = 0.90.

(d) M = 1.20.

Figure 21. Concluded.

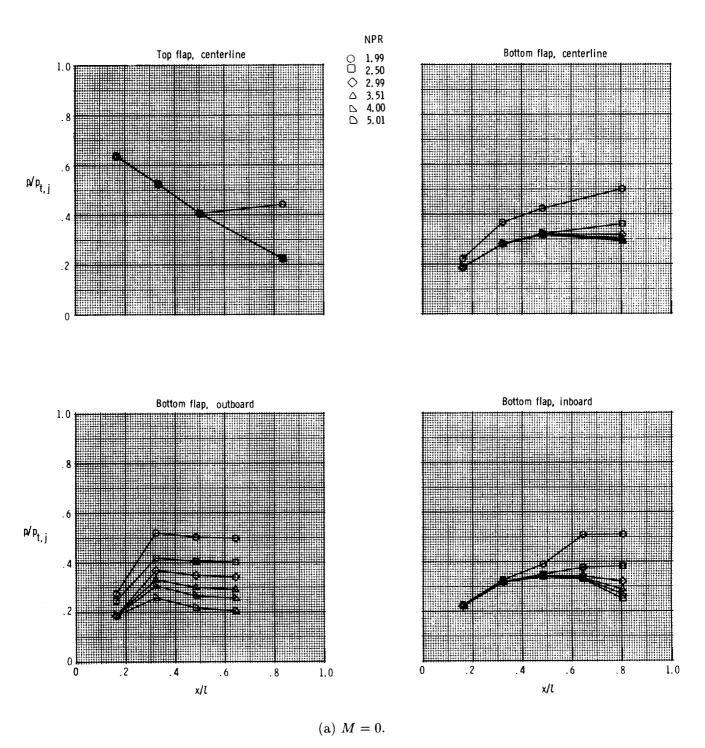
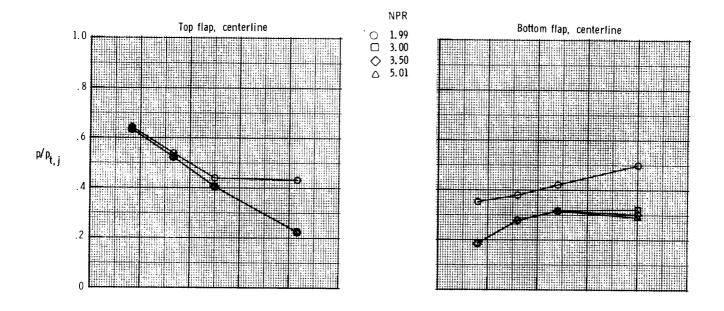
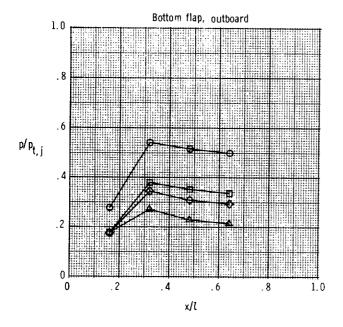
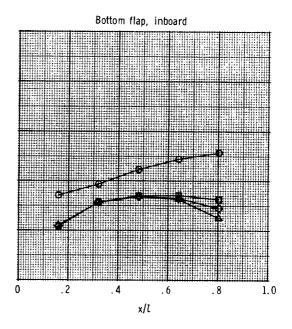
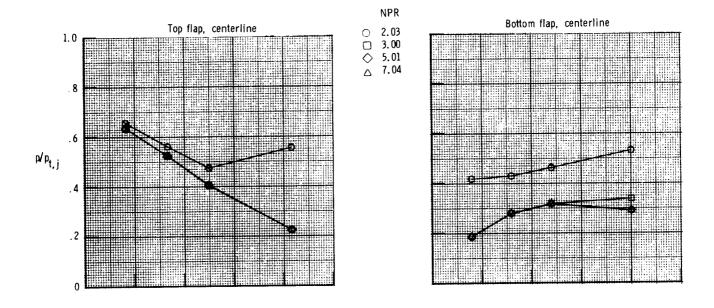
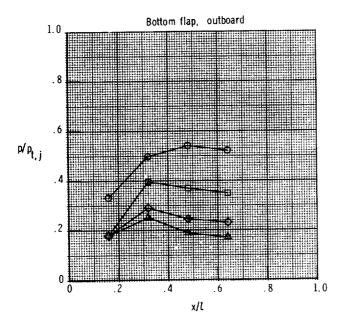
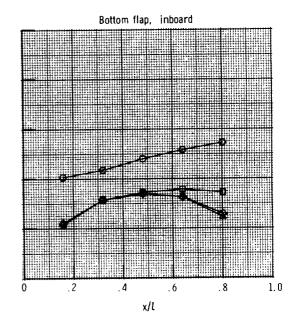





Figure 22. Effect of NPR on internal static pressure distributions for A/B power nozzle with 25-percent sidewalls, $\delta_{v,p} = 15^{\circ}$, and $\alpha = 0^{\circ}$.

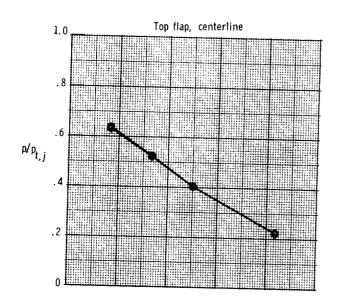


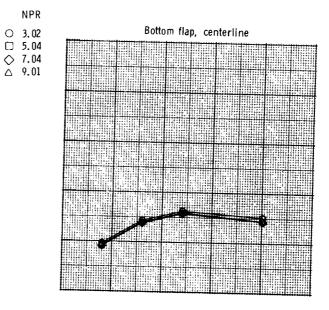


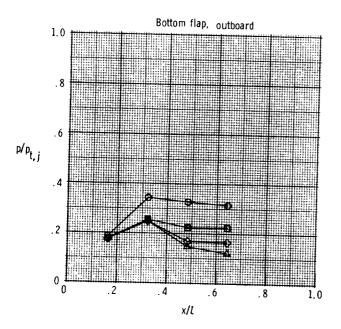


(b) M = 0.60.

Figure 22. Continued.







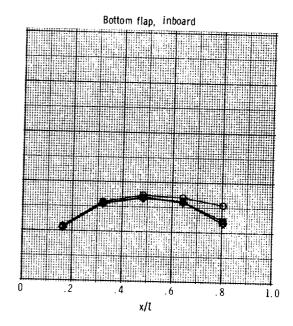

(c) M = 0.90.

Figure 22. Continued.

(d) M = 1.20.

Figure 22. Concluded.

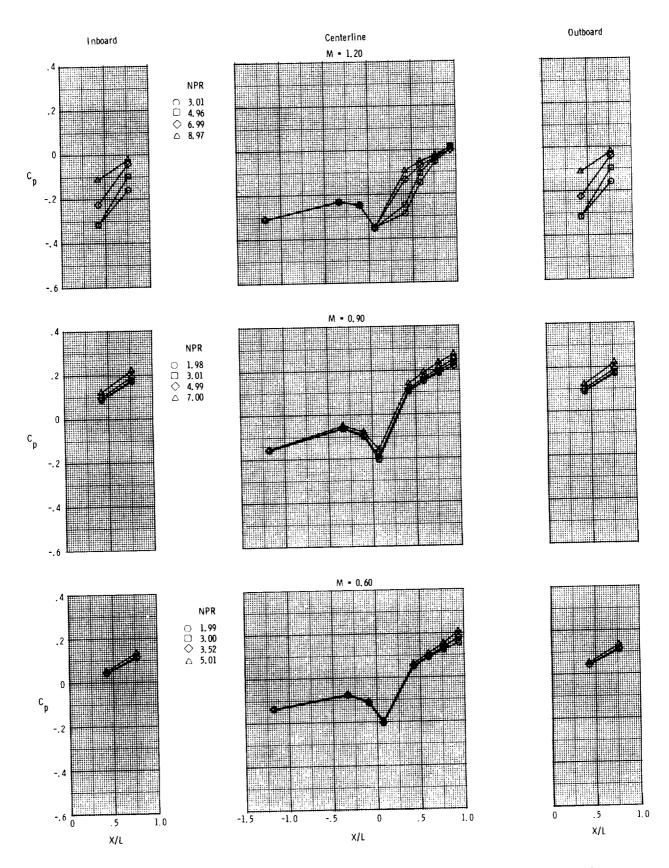


Figure 23. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle with 100-percent sidewalls, $\delta_{v,p} = 0^{\circ}$, and $\alpha = 0^{\circ}$.

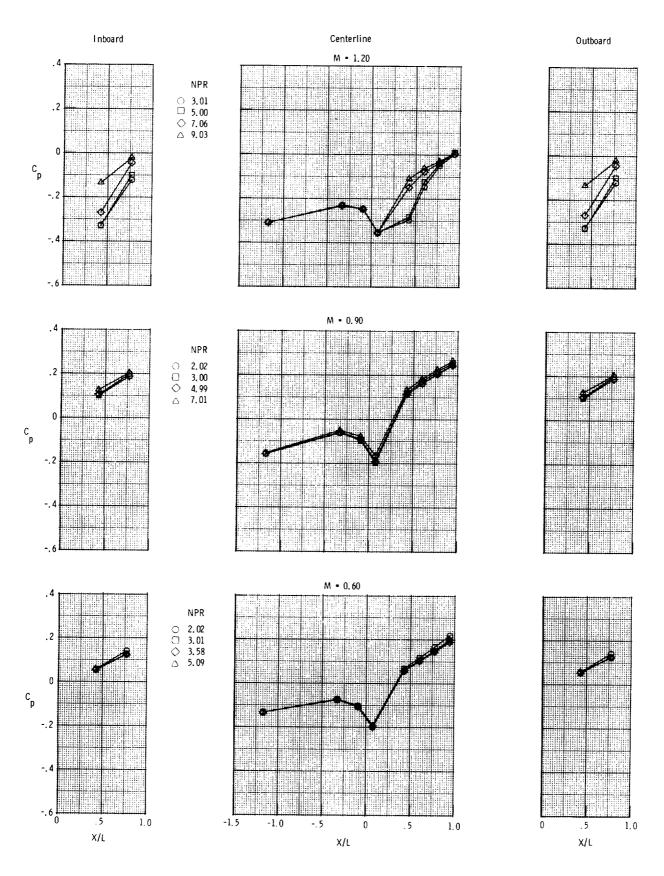


Figure 24. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle with 50-percent sidewalls, $\delta_{v,p}=0^{\circ}$, and $\alpha=0^{\circ}$.

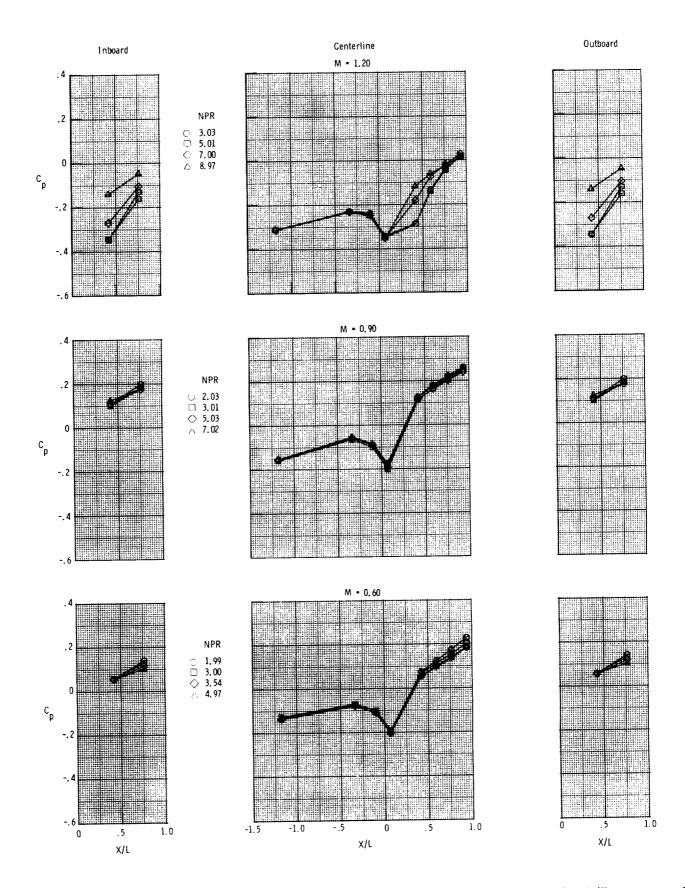


Figure 25. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle with 25-percent sidewalls, $\delta_{v,p}=0^{\circ}$, and $\alpha=0^{\circ}$.

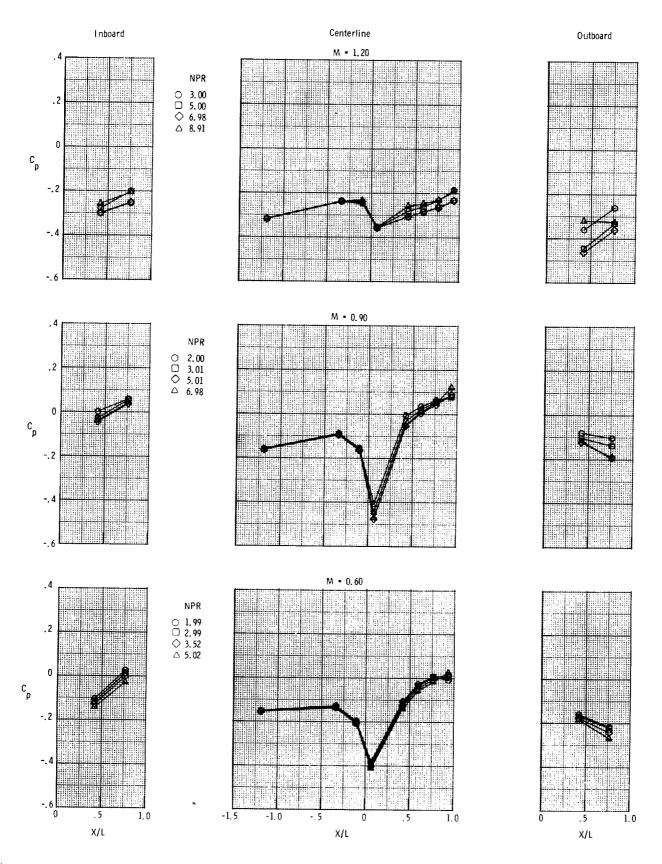


Figure 26. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle with 100-percent sidewalls, $\delta_{v,p}=15^{\circ}$, and $\alpha=0^{\circ}$.

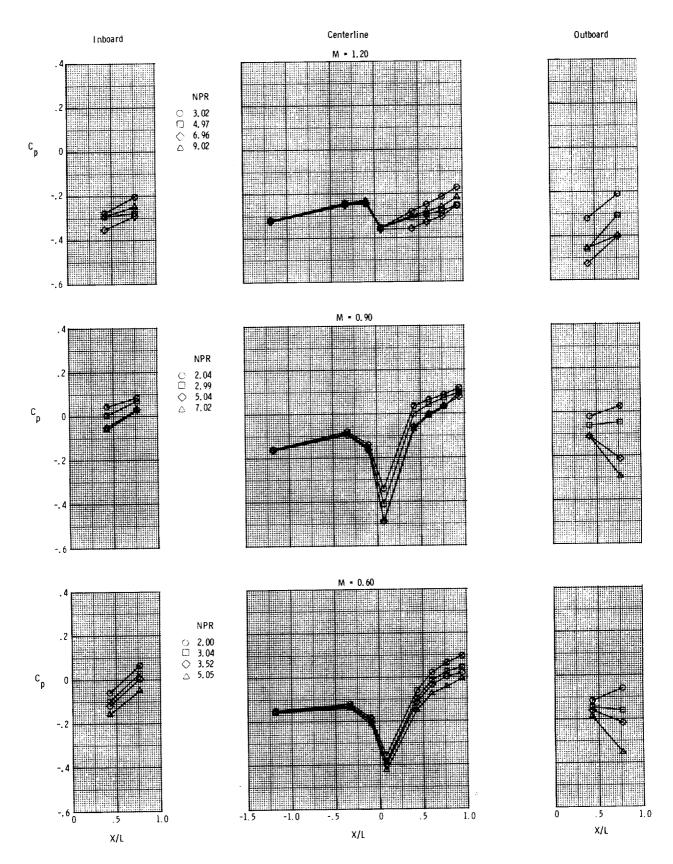


Figure 27. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle with 50-percent sidewalls, $\delta_{v,p}=15^{\circ}$, and $\alpha=0^{\circ}$.

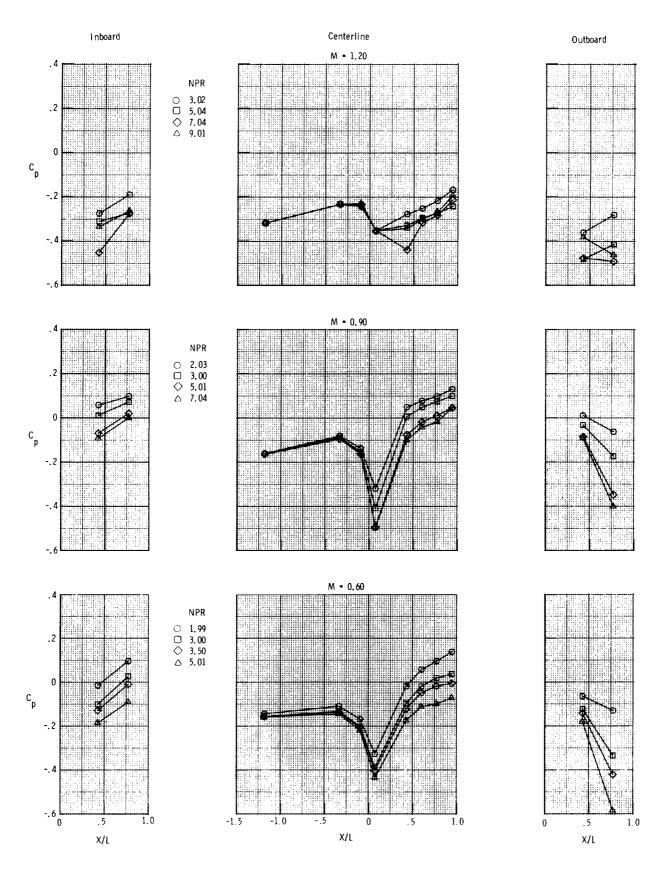


Figure 28. Effect of NPR on external static pressure distributions at test Mach numbers for A/B power nozzle with 25-percent sidewalls, $\delta_{v,p}=15^{\circ}$, and $\alpha=0^{\circ}$.

Figure 29. Effect of NPR on external static pressure distributions at M=0.60 for A/B power nozzle with cutback sidewalls, $\delta_{v,p}=0^{\circ}$, and $\alpha=20^{\circ}$.

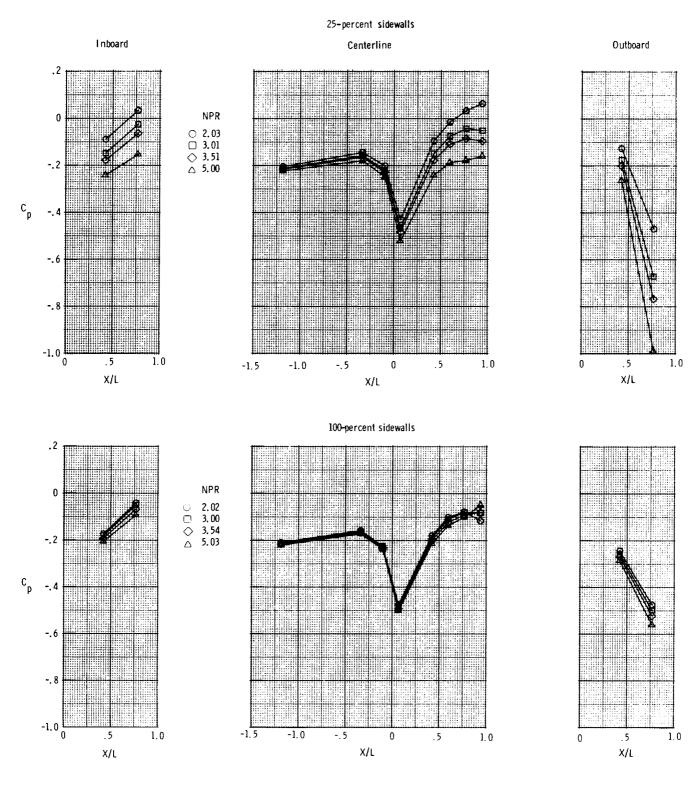


Figure 30. Effect of NPR on external static pressure distributions at M=0.60 for A/B power nozzle with cutback sidewalls, $\delta_{v,p}=15^{\circ}$, and $\alpha=20^{\circ}$.

		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

National Aerunaulics and Source Autorios/sation	Report Docume	ntation Page				
1. Report No. NASA TM-4155	2. Government Accession	No.	3. Recipient's Cat	alog No.		
4. Title and Subtitle			5. Report Date	,		
An Experimental Investigation of	of Thrust Vectoring	Two-	February 1	990		
Dimensional Convergent-Diverge	ent Nozzles Installed	in	6. Performing Org			
a Twin-Engine Fighter Model at	t High Angles of Att	ack	0. 1 0.10			
7. Author(s)		O Danfarraina Ona	anization Report No.			
Francis J. Capone, Mary L. Mas	. Leavitt		amzation report No.			
, , ,	,		L-16563			
9. Performing Organization Name and Address	SS		10. Work Unit No			
NASA Langley Research Center			505-62-71-0)1		
Hampton, VA 23665-5225			11. Contract or G	rant No.		
110mpton, 111 2 0000 0==0						
			13. Type of Repor	t and Period Covered		
12. Sponsoring Agency Name and Address				Memorandum		
National Aeronautics and Space	Administration	-				
Washington, DC 20546-0001			14. Sponsoring Ag	gency Code		
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the thrust vectoring capability of subscale, two-dimensional convergent-divergent exhaust nozzles installed on a twin-engine general research fighter model. Pitch thrust vectoring was accomplished by downward rotation of nozzle upper and lower flaps. The effects of nozzle sidewall cutback were studied for both unvectored and pitch-vectored nozzles. A single cutback sidewall was employed for yaw thrust vectoring. This investigation was conducted at Mach numbers ranging from 0 to 1.20 and at angles of attack from -2° to 35°. High-pressure air was used to simulate the jet exhaust and provide values of nozzle pressure ratio up to 9.						
17. Key Words (Suggested by Authors(s)) Longitudinal control power Directional control power Thrust vectoring Fighter aircraft Twin engine		18. Distribution Sta Unclassified		v 02		
	00 G 11 G1 15 / 5 /		21. No. of Pages			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of t Unclassified	ms page)	120	A06		

i

	The state of the s	
	Comparison of the comparison o	
·	Silver Standard	
	The state of the s	
	The second secon	
	A contract of the contract of	
*		
	The state of the s	

and the second and a second

BULK RATE
POSTAGE & FEES PAID
NASA
Permit No. G-27

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return